WZB

Berlin Social Science Center

Klaudia Erhardt

NEPS-Metafile.do - a Do-File to Generate
a Metafile on the Scientific Use Files
of the NEPS

Application of the do-file and documentation of the
resulting metafile including syntax examples on the use of
the metafile

Discussion Paper

SP12023-501r
September 2023 (revised November 2023)

Research Area
Dynamics of Social Inequalities

Research Group
National Educational Panel Study: Vocational
Training and Lifelong Learning

WZB Berlin Social Science Center
Reichpietschufer 50

10785 Berlin

Germany

www.wzb.eu

Copyright remains with the author(s).

Discussion papers of the WZB serve to disseminate the research results of
work in progress prior to publication to encourage the exchange of ideas and
academic debate. Inclusion of a paper in the discussion paper series does not
constitute publication and should not limit publication in any other venue.
The discussion papers published by the WZB represent the views of the
respective author(s) and not of the institute as a whole.

Klaudia Erhardt

NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use
Files of the NEPS

Application of the do-file and documentation of the resulting metafile
including syntax examples on the use of the metafile

Discussion Paper SP I 2023-501r
Wissenschaftszentrum Berlin fiir Sozialforschung (2023)

Abstract

NEPS-Metafile.do - a Do-File to Generate a Metafile on the
Scientific Use Files of the NEPS

by Klaudia Erhardt

NEPS-Metafile.do is a Stata program that generates a Stata file containing information on every
variable of the NEPS Scientific Use Files. This paper documents the indicators and characteristics that
are extracted from the source files and gives detailed instructions on how to apply NEPS-
Metafile.do. Using the resulting metafile is demonstrated by extensive syntax examples. The
complete syntax of NEPS-Metafile.do is included in the appendix and can also be downloaded (see

link below).

Keywords: NEPS Scientific Use Files, metafile, data management utility, Stata syntax

last updated: 2023-11-07, text applies to do-file version NEPS-Metafile_v03-00.do

NEPS-Metafile.do

Download: https://doi.org/10.7802/2606

NEPS-Metafile.do Do-file to generate a metafile on the Scientific Use Files (SUF) of

the National Education Panel Survey (NEPS).

System requirements:
e The do-file has been tested to run with Stata-versions 13 thru 17.

e Requires Stata IC or higher.

e The directory and file names that are to be processed by NEPS-Metafile.do must not

contain blanks.

Contact to the author for questions and feedback:

erhardtk@gmx.de

NEPS-Metafile.do is licensed under CC BY-NC-SA 4.0

https://doi.org/10.7802/2606
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 1

Contents

1. Introduction 2
2. Explanations and Definitions 3
2.1 Outline of how NEPS-Metafile.do works 3
2.2 Definitions 4
3. How to generate a metafile on the NEPS data using NEPS-Metafile.do 5

3.1 Specification of the required directory structure to enable the automatic processing of the
data of multiple start cohorts 5
3.2 User defined adaptations to be set in the parameter definition section 6
4. Documentation of the metafile 9
4.1 The variables of a metafile generated with NEPS-Metafile.do 9
4.2 Detailed documentation of the metafile-variables 11
5. Syntax examples on how to use the metafile 17
5.1 How to generate simple views or queries 17
5.1.1 Change the display format of variables in the data editor 17
5.1.2 Select variables and observations 18
5.1.3 Use string functions to select data subsets 19
5.2 Complex selection methods for source variables using the metafile 20
5.3 Exporting elements of the data subset to the Stata output or to a text file 22
5.3.1 Printing to the Stata logfile 22
5.3.2 Printing to an external text file 23
5.4 More tips on data selection 24
5.4.1 Using a flag variable to mark selected observations 24
5.4.2 Using the consecutive observation number (I/fn) to identify observations that belong to
the same topic 25
5.5 Collecting the variable names in the selected subset for further use 25
5.5.1 Case 1: All required variables are in the same source file 25
5.5.2 Case 2: The required variables are in several different source files 26
6. Appendix 1: Flow chart of NEPS-Metafile.do 30

7. Appendix 2: Complete syntax of NEPS-Metafile.do 32

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 2

1. Introduction

This documentation is aimed at users of the downloadable Scientific Use Files of the National
Educational Panel Study (NEPS-SUF), which can be obtained from the Leibniz Institute for
Educational Trajectories (LifBI) upon conclusion of a data usage agreement, see
https://www.neps-data.de/Data-Center/Data-Access.

NEPS-Metafile.do is an enhanced version of the Stata program | developed, assigned by the
NEPS group at the Wissenschaftszentrum Berlin (WZB), as a tool for the management of the
NEPS-data. The original version was adapted to WZB-specific data storage structures and file
naming conventions, whereas this new version is independent of the WZB environment.

What is the purpose of NEPS-Metafile.do? The program generates a Stata file containing
information on all variables of every included data file of the NEPS Scientific Use File (SUF), a
so-called metafile to the NEPS SUF files. The cases of the metafile represent the variables of
the included source data files, while its variables contain the indicators that have been
calculated or extracted from the original source variables.

Essentially, the metafile is a very large table containing information on the variables of the
SUF-Files of the NEPS. For example, the metafile shows how many non-missing observations
a source variable has, in which waves it has been surveyed, its variable name in the survey
instrument.

Figure 1: View of the metdfile in the data editor window of Stata

D Data Editor (Edit) - [metaf_NEPS-SUF_SC1-2-3-4-5-6_2023-07-26.dta] - m] X
File Edit View Data Tools

CE.FES8 Bm QY.

R 841
1fn stcohor datenfile nobs mrs nvrsnm varname varlab_en ~
18599 19437 SUF 504 5C4_pRarent D_13-8-2 15398 52 553 p3zsege nerator: salesperson
18680 19438 SUF 5C4 SC4_pParent_D_13-2-2 15938 658 553 p32ceef ator: police officer
18661 19439 SUF 504 5C4_pRarent 0_13-8-8 15338 658 553 p32681a_D rator: country nurse (simplified)
18602 19428 SUF 502 5C4_pParent_D_13-2-2 15998 652 553 p3zéela_R ator: country nurse or male nurse
18603 19441 SUF 504 5C4_pParent_0_13-8-8 15998 58 553 p3z6e1b_o neer (simplified)
18684 19442 SUF 502 5C2_pParent_0_13-2-2 15998 652 553 p326a1b_R country engineer
13605 19443 SUF 502 SC4_pParent_0_13-8- 15998 658 553 p326€1C_D rker (simplified)
18606 19442 SUF 504 5C4_pRarent D_13-8-2 15398 52 553 pa26@lc_R /transport worker
18687 19445 SUF 5C4 SC4_pParent_D_13-2-2 15998 658 553 p326@1d_D Position generator: coun r (simplified)
18608 19426 SUF 504 5C4_pParent_0_13-8-8 15998 58 553 pazee1d_R Position generator: country social worker
18609 19447 SUF 502 5C4_pParent D_13-2-2 15998 652 553 p3zéale D (simplified)
13618 19443 SUF 502 15998 658 553 pa26ele R ry sales clerk
18611 19449 SUF 502 15998 652 553 p32681F D (simplified)
18612 19458 SUF SC4 15938 658 553 p32681f_R country police officer
18613 19451 SUF 504 15338 658 553 paeeze Right to pursue employment in Germany Partner
18612 19452 SUF 502 15998 652 553 pe2418e Comparison current professional situation - situation partner in home coun_
18615 19453 SUF 504 15998 58 553 p731853_0 sighest educational qualification Partner, type open
18616 19452 SUF 502 15998 652 553 731857 School-leaving qualification Partner abroad, German equivalent
18617 19455 SUF SC4 15938 €58 553 p731858 puration of school attendance Partner abroad in years
18618 19456 SUF 502 15998 652 553 731859 FPermission to study at higher education institution with foreign school qu_
18619 19457 SUF 5C4 15938 658 553 p731868 vocational gualification/higher education Partner
18628 19458 SUF 504 15338 658 553 p731851 Highest vocational qualification partner in Germany or sbroad
18621 19459 SUF 502 15998 652 553 p731862 Type of training Partner
18622 19458 SUF 504 15998 58 553 p731863 (nighest) professional qualification Partner
18623 19461 SUF 502 15998 652 553 p731864.0 Professional qualification Partner (open)
18624 19452 SUF SC4 15938 658 553 p731866 Type Tertiary gualification Partner
18625 19453 SUF 504 15398 52 553 p731867_0 Type Tertiary gualification Fartner (open)
18626 19454 SUF 5C4 15938 658 553 p731868 Type Tertiary educational institution Partner
18627 19455 SUF 504 15338 658 553 p731878 Doctorate Fartner o,
< >

eady Vars: 9 of 259 Order: Dataset ~ Obs:33.757 Filter Off Mode: Edit

https://www.neps-data.de/Data-Center/Data-Access

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 3

To work properly, NEPS-Metafile.do requires the input of some parameters. In contrast to
Stata ado files the required parameters are not entered while calling the procedure, but are
filled in to a section in the first part of the syntax by the user. This process is explained in
detail in chapter 3, while chapter 2 includes some basic explanations on the functioning of
NEPS-Metdfile.do.

Chapter 4 lists all indicators of the source data that are contained in the metafile and de-
scribes them in detail.

As said above, the metafile can be regarded as a very large synoptical table—a very simple
two-dimensional data base. To use it properly, procedures using Stata syntax for data re-
trieval are very helpful. Chapter 5 shows by syntax examples how you can use the metafile
for your tasks by extracting specific information.

NEPS-Metafile.do is not only able to process the original NEPS-SUF data but can also be used
to generate a metafile for modified NEPS data. In principle, the do-file can generate meta-
files for any Stata file. However, the extracted indicators are partly specific to the NEPS data,
or they are based on entries in the "characteristics" of the source data files (see chapter 4.2).
If those are not provided, the related variables of the metafile will contain missing values
only.

2. Explanations and Definitions

2.1 Outline of how NEPS-Metafile.do works

The program is controlled by parameters, some of which are set automatically, while others
are user defined. All parameters to be set by the user are listed in the first part of the syntax,
in section "Manually Defined Parameters". Chapter 3.2 gives detailed instructions on how to
do this.

Metafile_NEPS.do automatically processes the directory structure in which the NEPS SUF
data files are stored. This has to be either a single source data directory that contains all
NEPS data files to be processed, or a specific structure of directories and subdirectories. The
directory structure of the source data files expected by NEPS-Metdfile.do is described in
detail in Section 3.1.

The source data files are processed one after the other. Certain indicators for the variables
of the respective data file are extracted, temporarily stored in source data file-specific meta-
files and finally merged into a new file, the overall metafile.

In order to reduce the runtime of the program, larger source data files are broken down into
portions before processing (segmented processing).

NEPS-Metafile.do writes successive progress notes, potential data problems, the name and
path of the resulting metafile, and the total runtime to the output and the logfile.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 4

2.2 Definitions

Some basic terms used in this documentation are defined or explained below.

Non-missing values

Some of the indicators in the metafile relate to "non-missing" observations in the variables
of the source files. The Stata missing values (., .3, .b (...) .z) and the missing codes of the NEPS
Scientific Use Files (as specified in the parameter definition section of NEPS-Metafile.do) are
excluded from the non-missing observations.

The list of missing codes can be modified by the user in the parameter definition section of
the do file (see chapter 3.2).

All files of all start cohorts are treated the same with respect to the missing codes. The
program does not allow for different sets of missing codes in different start cohorts or files.
If missing codes are used in a file which are valid codes in other NEPS-SUF files, you will need
to separately run NEPS-Metafile.do for those files while in each run adapting the missing
codes list in the parameter definition section accordingly. The separate Metafiles can then
be combined to an overall Metafile.

System-missings or sysmis

"System-missings" or "sysmis" is the denomination for the Stata missing codes ., .a, .b, (...) .z,
in contrast to the NEPS-specific missing codes. The symbol for the Stata missing code "." can
be easily overlooked in running text, therefore in this documentation we talk mostly of
<sysmis> or sysmis.

Type-1 indicators and type-2 indicators

In this paper, the term "indicator" is used to describe characteristics that are extracted from
the source files and their variables and transferred to the metafile.

Type-1 indicators have one single value per source variable. For convenience, | usually refer
to them as "indicators" or "characteristics". Type-2 indicators have a list of values for each
source variable. For instance, the maximum value of a variable is a (type-1-)indicator, while
the levels of a source variable are a type-2 indicator.

A type-1 indicator loads a single metafile variable, while a type-2 indicator loads a group of
metafile variables.

Macros

Within Stata syntax, macros serve as a kind of container. In the course of a Stata program,
strings or values are assigned to macros to fulfil a certain task at different subsequent places
in the syntax - for example as a loop counter or to transfer values to variables. Macros are
crucial in NEPS-Metdfile.do as a container for the characteristics extracted from the source
files and transferred to the metafile.

There are local macros in Stata that only persist during the runtime of a Stata program, and
global macros that persist throughout a whole Stata session. The complete syntax of NEPS-
Metafile.do exclusively uses local macros. Thus no modifications of the Stata environment
outside of NEPS-Metafile.do are made by the program.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 5

Users of NEPS-Metafile.do do only encounter macros when defining the parameters to adapt
the program to the user-specific environment and options.

3. How to generate a metafile on the NEPS data using NEPS-Metafile.do

3.1 Specification of the required directory structure to enable the automatic
processing of the data of multiple start cohorts

Important note: Although Stata allows for spaces in the file names, NEPS-Metafile.do does
not, since core functions of the do file depend on spaces being interpretable as separators
between directory or file names, respectively.

As mentioned before, NEPS-Metafile.do automatically processes a specific directory struc-
ture in which the SUF data files are stored. This can either be a single source data directory
that contains all NEPS data files to be included, or a structure of directories and subdirecto-
ries in which the data of the individual start cohorts are stored. The programming of NEPS-
Metafile.do thus picks up the data structure in which the NEPS data is provided by LifBI,
divided into (sub-)directories by start cohort and version of statistical package. Hence, the
programming of NEPS-Metafile.do allows for the direct processing of this structure without
having to reorganize the source data beforehand.

The formal rules for the directory structure that is prerequisite for a correct processing by
NEPS-Metafile do are described below. How the data files of the start cohorts are distributed
within this data structure is irrelevant. Hence the data files of several start cohorts can be
stored in one directory, or the data files of a start cohort can be stored in different
(sub-)directories. However, each source file should only exist once in any of the directories
involved, otherwise it will appear more than once in the metafile.

The following rules apply:

e All data directories must be subdirectories of the same root directory.

e All data directories must be addressable with the same wildcard, for instance "SUF*".
The wildcard must only address the directories of interest. For example, if you had a
directory named "SUF-old-versions" in the same root directory, it would also be
processed if you use the wildcard "SUF*", which is something you might not want.

e Inthe directories, a subdirectory may contain the source data files that are to be used for
the metafile. In this case, the source data files must be in an identically named
subdirectory in all SUF directories. However, if the directories hold other differently
named subdirectories, these will just be ignored.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 6

Hence, the directory structure must follow the pattern:

Rootdirectory - Data files

or

Rootdirectory - Subdirectories - Data files

or

Rootdirectory - Subdirectories - Subsubdirectory - Data files

Each of these levels are defined by the user in the parameter definition section of NEPS-
Metafile.do (see chapter 3.2).

Elements in bold denominate directories that must be named positively in the parameter
definition section without using a wildcard.

3.2 User defined adaptations to be set in the parameter definition section

NEPS-Metafile.do has to be adapted to the local environment and options. This is described
in detail In this chapter.

The syntax of SOEP-Metafile.do is divided into several sections. Adaptations by the users are
made exclusively in section "B) MANUALLY DEFINED PARAMETERS", which follows section
"A) AUTOMATICALLY DEFINED PARAMETERS". Comments and examples inserted into the
syntax, as well as the detailed specifications in the table below, will assist in determining the
parameters.

Further modifications of SOEP-Metafile.do are not required and should only be made if you
have acquired an in-depth understanding of the procedures of the do-file.

Table of the manually defined parameters

The macros listed in the table below are defined in section "B) MANUALLY DEFINED PARA-
METERS". The indication "mandatory” means the macro must hold a value (i.e. the macro
may not be defined as: local xyz ""). In contrast, optional macros may be defined as empty.

Most of the macros listed in the table are either automatically defined by a default value
when not defined by the user or they are already predefined in the definition section and
can be changed by the user. Therefore, the number of parameters that must actually be set
by the user is considerably reduced, compared to the list.

In the table, the parameters that must be set by the user are highlighted in yellow. Alongside
these, there are parameters highlighted in pale blue which must be controlled by the user
and, if necessary, adapted.

The order of the macros in the table corresponds to the order in which they appear in the
parameter definition section of the syntax.

In the syntax, the macros containing path and file specifications are filled with examples to
be replaced by the user.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

Table 1: User-Defined Parameters in the Definition Section of NEPS-Metafile.do

Name of the macro

Explanation

files

Criterion to select the files to be processed within the source directories. The
criterion must consist of a single item with or without wildcards (i.e. "*.dta" or
"*pT*.dta" or "SC4_sp*.dta")"bdp.dta" or "b*.dta" or "*p.dta").

Optional. If the macro is defined as empty, the default value "*.dta" is used.

rootdir

root directory to the source files
Mandatory

Note: Backslashes can cause problems with macro expansion. Therefore NEPS-
metafile.do automatically converts all backslashes in the path information with
slashes. This means that it doesn't matter whether the paths are specified here
with slashes or with backslashes (applies also to the macros subd and subsubd).

subd

Criterion to select the subdirectories of rootdir Wildcards are permitted.
Mandatory, if the source files are stored in subdirectories.

If the source files are stored directly in the root directory, subd must be defined as
empty.

subsubd

Criterion to select a subdirectory of subd. Wildcards are not permitted. The
subdirectories of subd must be named similarly in all subd-directories.

Mandatory, if the source files are stored in a subdirectory to subd.

If the source files are stored in the root directory or in the subd directories,
subsubd must be defined as empty.

pfadid
pfadlo

pfadld: Target directory for the resulting metafile
pfadlo: Target directory for the logfile.

Mandatory. pfadid and pfadlo may designate the same directory.

we

Appendix to the file name of the resulting metafile. Can be used to indicate the
processed source files.

Optional. If the macro is not defined or changed, the metafile of a last run at the
same day with the same target directory might be overwritten inadvertedly.

Predefined as "NEPS-SUF_"

Recommendation: Control and adapt the macro definition if necessary.

wel

Additional appendix to the file name of the resulting metafile. Can be used as an
indicator of the processed source files.

Optional.
Predefined as "SC1-2-3-4-5-6_"

Recommendation: Control and adapt the macro definition, if necessary.

result

Name of the resulting metafile

Mandatory. Modifications of the macro definition are permitted but not
necessary.

Predefined as "metaf_‘we"wel"datum''.

Recommendation: Don't change the predefinition.

reslab

Label attached to the resulting metafile using the Stata-command label data.

Optional. If the macro is defined as empty the resulting metafile will not be
labeled.

Predefined as "metafile NEPS-SUF from NEPS-Metafile_v03-00.do"

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

Name of the macro

Explanation

g

Name of the resulting logfile

Mandatory. Modifications of the macro definition are permitted but not
necessary.

Predefined as "metaf_‘we"wel"datum'.log"

Recommendation: Don't change the predefinition.

wavel, wave2

First and last wave in the source files

Mandatory. Adaptation of wave2 to the latest wave in the source files may be
required, while wavel should stay unmodified.

Predefined as wavel = 1 and wave2 = 18

wavel and wave2 are used in NEPS-Metafile.do to delimit valid and invalid wave
numbers. Therefore the macro definition should match the actual waves.

Note: if waveZ2 is defined with too small a value, the affected values of the wave
indicator are designated as invalid values in the output window. No wav# variables
for these values will be created. If this is the case, stop the run with "Break",
correct the definition of wave2 and restart NEPS-Metafile.do

Recommendation: Don't change the predefinition of wavel. Control wave2 and
change it, if necessary. You can see the actual last wave from the number of the
SUF releases (l.e. with SC5_D_18-0-0 the last wave is 18). If data of several start
cohorts is processed, use the highest wave number in any of the included SC-
specific SUFs to define wave2.

syrlist

Priority list of possible wave indicator variables in the source files. Note: currently
the only wave indicator in the NEPS data is wave.

Mandatory. Changes of the macro definition are permitted, but currently not
necessary.

Predefined as "wave"

Note: If additional wave indicators should occur in the NEPS SUF data in future,
they must be listed as a descending priority list in the wave macro definition. Thus
NEPS-Metafile.do will decide which of several wave indicators present in a source
file is used to generate the wave indicator variables in the metafile.

Recommendation: Change the predefinition of wave only when necessary.

nepsmissundc,
nepsmissdc

-> nepsmissings

nepsmissings, a combination of nepsmissundc and nepsmissdc, list of the NEPS
missing codes.

Optional. If the list is empty, incomplete, or contains wrong values, the "non-
missing"-indicators in the metafile are not correct.

nepsmissundc missing values found in the data, but yet undocumented. Will
probably (partly) be replaced in future releases of the SUF.
Predefined as "-51 -32 -19 -4"

nepsmissdc missing values according to nepsmiss.ado from the LifBi-Nepstools,
predefined as "-99/-90 -56/-52 -29/-20 -9/-5"

Recommendation: Change the predefinition of nepsmissing when necessary.
Probably the undocumented missing values will be documented in a new version
of nepsmiss.ado and/or replaced in SUF-releases later than July, 2023.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 9

Name of the macro Explanation

port Number of variables per portion when segmented processing is applied.
Optional. If the macro is defined as empty or has the value of 0, the default value
of 50 is set. This value has proved to be a good compromise between the runtime
reduction by segmented processing and the runtime prolongation by the
increased number of cycles over the single portions.

Note: if a source file has less than twice the number of variables denominated in
port, segmentated processing will be skipped.

Recommendation: Don't change the predefinition of port which is 50.

4. Documentation of the metafile

A metafile generated with NEPS-Metafile.do for the NEPS SUF data contains 256 variables,
i.e. characteristics of the files and variables of the SUF.

Of these 256 variables, 26 variables are type-1 indicators to the source variables, 5 variables
are file-specific information and 6 variables are identifiers and technical information. The
remaining 219 variables are fed from type 2 indicators: 100 variables each for the values and
value labels of the source variables, and 19 variables for the up to yet 18 previous survey
waves and the combination variable of the survey waves. (Explanation of type 1 and type 2
indicators see section 2.2).

4.1 The variables of a metafile generated with NEPS-Metafile.do

In systematic order

Identifiers
e |D of the start cohort
e Name of the source file

e Name of the source variable

File-related indicators

File-related indicators are constant over all variables of a source file.

e Data signature of the source file as date

e Number of observations in the source file

e Number of variables in the source file

e Number of variables in the source file with non-missing values

e Wave indicator: variable in the source file that holds the survey year

Variable related indicators (type-1 indicators)

Type-1 indicators have one value for each source variable.

e German variable label

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 10

e English variable label

e Variable name in the questionnaire

e Question number in the questionnaire

e German question text in the questionnaire
e English question text in the questionnaire
e Qutput filter in the questionnaire

e Autofill instruction in the questionnaire

e Number of non-missing observations

o Number of system-missings

e Number of levels

e Number of non-missing levels

e Value of the variable if there is only 1 level
e Value of the variable if there is only 1 non-missing level
e Frequency of value 0

e Minimal value

e Minimal non-missing value

e Maximal value (except system-missings)

e Name of the value label definition

e Number of unlabeled observations (only with labeled variables)
e Highest labeled value

e Minimum length (string variable)

e Maximum length (string variable)

e Number of survey waves

e Earliest survey waver

e latest survey wave

Variable related type-2 indicators

Type-2 indicators have a series of values for each source variable and feed a related series of
metafile variables.

e Survey waves

e Combination variable of the survey waves

e Levels (variables with max. 100 levels)

e Value labels (variables with max. 100 levels)

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

11

"Technical" variables

e Consecutive number

e Data type of the source variable

e Storage type of the source variable

4.2 Detailed documentation of the metafile-variables

Table 2: The metafile variables in the order in which they appear in the metafile

Variable

Variable label

Description

Ifn

Record Number

numVar, range: Integers >0

Consecutive number of all observations; represents
the sequence of the variables of the source files at
the time when the metafile was generated. Ifn is
generated upon each run of NEPS-Metafile.do and is
therefore not an identifier within different versions
of the metafile.

(A constant unique identifier for the observations of
the metafile is the combination of the metafile
variables datenfile and varname).

stcohor

Start cohort

stringVar
Acronym of the start cohort (SUF SC#).

Constructed from the string "SUF" and the first 3
characters of the data file name.

datenfile

Source file

stringVar

Name of the source file.

dsign

Data signature (date)

stringVar

Shows whether the data has been changed since the
last time a data signature was assigned (originally by
LifBi). See Stata command: help datasignature .

nobs

No. of observations in source
file

numVar, range: Integers >0

Number of observations in the source file.

nvrs

No. of vars in source file

numVar, range: Integers >0

nvrsnm

No. of vars with non-miss
values in source file

numVar, range: Integers >=0

varname

Variable name

stringVar

Name of the source variable.

varlab_de

variable label DE

stringVar

German variable label of the source variable.

Note: NEPS-Metafile.do determines the language
versions of the source file and generates a

variable for each of them containing the source
variable label in the respective language.

varlab_en

variable label EN

stringVar

English variable label of the source variable.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

12

Variable

Variable label

Description

ivarname

Varname in questionnaire

stringVar

Variable name in the questionnaire, taken from the
"characteristics" of the source file.

Empty if no variable name from the questionnaire is
specified in the characteristics.

iquestno

Question no. in questionnaire

stringVar

Question number in the questionnaire, taken from
the "characteristics" of the source file.

Empty if no question number is specified in the
characteristics.

questde

German question text

stringVar

German question text in the questionnaire, taken
from the "characteristics" of the source file.

Empty if no German question text is specified in the
characteristics.

questen

English question text

stringVar

English question text in the questionnaire, taken
from the "characteristics" of the source file.

Empty if no English question text is specified in the
characteristics.

ofilter

Output filter

stringVar

Output-filter-instruction, taken from the
"characteristics" of the source file.

Empty if the output-filter instruction is not specified
in the characteristics.

afill

Autofill instruction

stringVar

Autofill instruction, taken from the "characteristics"
of the source file.

Empty if the autofill instruction is not specified in the
characteristics.

type

storage type

stringVar

Storage type of the source variable.

isnumeric

whether numeric or string

numVar, range: 1,0

Flag: source variable is numeric/not numeric.

nonmis

No. of non-miss obs in var

numVar, range: Integers >=0

Number of observations of the source variable with
values that are not:

<nepsmissings> or <sysmis> (with numvars)

Empty or <nepsmissings> (with stringVars)

Note: In interval-scaled variables of the SUF, the
values declared as <nepsmissings> may occur as
valid values. For this reason, the metafile indicators
basing on the inclusion or exclusion of the

<nepsmissings> may have a (minor) error for
interval-scaled source variables.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

Variable Variable label Description
sysmis No. of system-miss obs in var numVar, range: Integers >=0
Number of system-missing observations (., .a, .b....z).
With string vars: -200
unigvals No. of levels in var numVar, range: Integers > 0
Number of unique values (including missing codes
and <sysmis>.
With string vars: Number of diverse entries
(including <empty>)
unigvalpos No. of levels in var >=0 numVar, range: Integers >=0
Number of unique values without <sysmis> and
missing codes.
With string vars: Number of diverse entries which
are neither empty nor hold a NEPS missing code.
See above, note to nonmis.
valuniq Value if only 1 level numVar, range: -900, -200, values of the source
variables
Value of the source variable if unigvals ==
-900 if unigvals > 1
-200 with stringVars
valunigpos Value if only 1 level >=0 numVar, range: -900, -200, positive values of the
source variables
Value of the source variable if unigvalpos ==
-900 if unigvalpos =1
-200 with stringVars
nvalzero Frequency of value 0 numVar, range: Integers >=0
With stringVars: frequency of empty strings
valmin Minimum value of var numVar, range: -200, values of the source variables
Decimals rounded to 2 decimal places
-200 with stringVars
Note: valmin is <sysmis> if the source variable is
<sysmis> allover.
valminp Minimum value of var >=0 numVar, range: -900, -200, values of the source
variables >=0
Minimal value of the source variable that is >=0
(= minimal non-missing value).
-900 valmax < 0 (no non-missing value in the source
variable)
-200 with stringVars
See above, note to nonmis.
valmax Maximum value of var numVar, range: -200, values of the source variables

Decimals rounded to 2 decimal places

Without <sysmis>, unless <sysmis> is the only value
of the source variable (in that case, valmin is also
<sysmis>).

-200 with stringVars

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

14

Variable

Variable label

Description

vlabmax

Maximum labeled value

numVar, range: -200, values of the source variables
-200 if no value label set is assigned

NOTE: the indicator relates to the defined labels, not
to the actual values.

vallabset

Name of value label set

stringVar
Name of the attached value label set.
"-200" if no value label set is attached

undoc

No. of unlabeled obs (labeled
vars only)

numVar, range: -9, -2, Integers >=0
Number of observations of the source variable in

non-labeled categories, (when a value label set is
assigned to the variable).

-900 the source variable has a value label set, but
only missing codes and possibly value 0 are
labeled.

-200 the source variable has no attached value label
set.

strmin

Min. length of string var

numVar, range: -2, Integers >=0

Minimal length of non-empty entries (= 0 if all
entries in the source variable are empty).

-200 with numVars.

strmax

Max. length of string var

numVar, range: -2, Integers >=0

Maximal length of non-empty entries (= 0 if all
entries in the source variable are empty).

-200 with numVars.

wind

Wave indicator

stringVar

Reports the wave indicator in the source used to
generate the metafile-variables nwaves, wavemin,
wavemax, and wavl - wav#

(with NEPS data currently always: wave)

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

nwaves

No. of waves

numVar, range: -1, Integers >=0

Number of waves in which the source variable is
surveyed. Generated on the basis of the priority list
of possible wave indicators defined in the parameter
definition section of NEPS-Metafile.do

0 the source file contains a wave indicator, but
the source variable has no non-missing values

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

Variable

Variable label

Description

wavemin

Earliest wave

numVar, range: -9, -1, Integers >= 0 & <= of the
actual data release
Earliest year in which the source variable was sur-

veyed (i.e. the minimum value of the relevant wave

indicator).

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

-9 nwaves == 0 (i.e. the source file contains a
wave indicator, but the source variable has no
non-missing values)

wavemax

Latest wave

numVar, range: -9, -1, Integers >= 0 & <= of the
actual data release

Latest year in which the source variable was

surveyed (i.e. the maximum value of the relevant

wave indicator).

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

-9 nwaves ==0 (i.e. the source file contains a

wave indicator, but the source variable has no
non-missing values

waves

Waves where var has nonmiss
values

stringVar

Contains, as a string, the combination of all waves in
which the source variable has non-missing values.
Each of the waves is represented with its specific
code.

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

0 the source variable was not surveyed or has no
non-missing values in any of the waves

wavl - wav#

numVars, range: -1,0, 1
Flag variables for each wave.

1 the source variable has nonmissing values in
the respective wave

0 the source variable was not surveyed or has no
non-missing values in the respective wave

-1 the source file contains none of the wave
indicators of the priority list (macro syrlist)

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

16

Variable

Variable label

Description

vall - val100

numVars, range: -100, -200, -900, <sysmis>, values of
the source variable

vall-val100 show the actually observed levels of the
source variables (only numVars with a maximum of
100 non-missing levels)

-100 numVar has more than100 non-missing levels

-900 numVar has not more than 100 levels, but all
are missing codes

-200 stringVars (The values of stringVars are
recorded in the metafile-variables lab1-lab100,
because vall-val100 are numVars and cannot
hold strings)

<sysmis> val#-variables that are not taken

lab1 - lab100

strVars

lab1-lab100 show the labels of the actually observed
levels of the source variables (only variables with a
maximum of 100 non-missing levels).

"H###" level without label, although the source
variable has value labels (= undocumented
levels, or scales where only the endpoints are
labeled)

"-100" source variable has more than100 non-
missing levels

"-200" source variable without attached value label
set

"-900" source variable has value label set and a
maximum of 100 levels, but all values are
missing codes

With stringVars the metafile-variables lab# hold the
unique values (levels) of the source variable. With
more than 100 levels, the value of lab# is -100

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 17

5. Syntax examples on how to use the metafile

This section describes, among other things, how Stata string functions are used for data
selection (data retrieval). From Stata 14, the names of string functions have a prefixed "u"
(standing for "unicode"). For instance, the function strpos() becomes ustrpos() as of Stata 14.
Therefore, if you are using a Stata version older than Stata 14, the syntax examples must be
adapted accordingly.

Angle brackets in the syntax examples indicate placeholders. In the following syntax

edit <varlist> i1if <condition>

<varlist> is to be replaced by a list of variables in the file, and <condition> by a stated
condition.

Working with the metafile consists mainly of retrieving data subsets (queries) from the over-
all metafile, viewing these subsets, and subjecting them to further procedures.

The data subset can be displayed onscreen. The selected subset is also available in the
working memory for further processing, using Stata commands.

Both procedures are explained in the next section, which includes examples of use.

5.1 How to generate simple views or queries

Using the Stata data editor, the metafile can be viewed as a spreadsheet. Given the size of
the metafile, it is much more covenient for users to restrict the displayed information to the
data that is currently relevant.

To display the working file onscreen, Stata offers "browse" and "edit" modes. In edit mode,
users can manually change values or copy them to the clipboard: in browse mode users can
only view the data.

It is advisable to store commands to generate a view in the syntax editor and save them as a
do-file, in order to make the procedure reproducible.

5.1.1 Change the display format of variables in the data editor

While viewing the metafile in the data editor, it is often more convenient to decrease the
width of the variables, so that more variables are visible on the screen without as much
scrolling. Examples:

format datenfile %20s

format varname ivarname %14s
format iquestno %10s

format type %4s

format varlab de varlab _en %60s
format questde questen %60s
format nvrs $7.0g

=» changing the display format of variables does not affect the contents of variables. The
format of each variable is shown in the properties window.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 18

5.1.2 Select variables and observations

edit <varliste> if <condition> Or:

browse <varliste> if <condition>
=» The use of edit instead of browse enables data to be copied to the clipboard.

=» With long variable lists it is more convenient to "click" the variable names to the
command window and copy them via the clipboard to the syntax editor, rather than
typing them.

Example 1: Generate corresponding lists of the SUF variable names and the variable names in
the questionnaire

ed 1fn datenfile varname ivarname iquestno varlab en

The resulting contents of the data editor can be copied via the clipboard to an empty Excel
spreadsheet or to a Word file. In Word the copied contents of the data editor is inserted as
tab delimited text, which can be easily converted to a Word table.

You can also save the actual contents of the data editor as a Stata file:

preserve

keep 1lfn datenfile varname ivarname iquestno varlab en
save "<Pfad>/varname ivarname SC6", replace

restore

=» with preserve / restore you can save a subset of the data and after that continue to
work with the complete metafile.

Example 2: Generate a table of the data files and their number of variables and observations

sort datenfile varname

capture drop hl

by datenfile: gen byte hl = cond(n == 1, 1, 0)
ed datenfile nvrs nobs if hl ==

This example only requires indicators which are constant within a source file. Therefore the
first observation of each source file is marked with the auxiliary variable h1, which is then
used as a selection criterion. The syntax component cond(...) means: "assign to h1l the value
1 if _n==1 (i.e. the first observation), otherwise value 0". Because of the instruction by
datenfile _n has the value 1 in the first observation of each data file and counts up to the last
observation of the file.

After running the above syntax the resulting view can be transmitted, as described above, to
Excel, Word, a text editor, or saved as a Stata file:

preserve

keep if hl==

keep datenfile nvrs nobs

save ""<Pfad>/datenfiles nobs", replace
restore

capture drop hl

sort 1fn

=» The record number /fn in the metafile is used to restore the original order

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 19

Example 3: Generate a flag variable for source variables whose levels include level -4

The following example uses the metafile variables vall - val100. Therefore it can be applied
to numeric source variables with <= 100 levels, and to values which are not declared as NEPS
missings (see chapter 4.2 for the documentation of the metafile variables vall - val100 and
chapter 3.2 for the declaration of the NEPS missings).

capture drop tl
gen byte tl = 0
forvalues n = 1(1)100 {
replace tl =1 if val'n' == -4
}
fre tl
list datenfile varname 1f tl==

5.1.3 Use string functions to select data subsets

Since the metafile contains many string variables, the fundamental string functions for data
selection are presented below by examples.

Example 4: Selection of cases based on a specific string within a string variable

..1f ustrpos(varlab de, "erwerbs") > 0

The return value of the function ustrpos() is the position at which the specified string
("erwerbs") is found first within the specified variable (varlab_de). For instance, the condi-
tion selects cases where varlab_de is "Nebenerwerbstatigkeit" or "nicht erwerbstatig".

Example 5: Selection of cases based on a specific string within a string variable, case
insensitive

..1f ustrpos (ustrlower (varlab de), "erwerbs") > 0

In this example, the functions ustrpos() und ustrlower() are nested. The expression says: ... if
the string "(...)" is found within the contents of variable (...), which is converted into lower
cases. The condition selects cases in which varlab_de is "Nebenerwerbstatigkeit" or "nicht
erwerbstatig", or "Erwerbstatigkeit", for instance.

Example 6: Selection of cases where the contents of a string variable begins with a specific
string

..1f ustrpos(varname, "ts") == 1
or:
..1f usubstr(varname, 1,2) == "ts"

The first line asks if the string "ts" is to be found starting from the first character of varname.
The second line asks if the first two characters of varname are "ts".

Any leading or trailing spaces in the variables can be skipped with the usttrim() function:
..i1f ustrpos(ustrtrim(varname), "ts") == 1

..1f ustrpos (ustrtrim(ustrlower (varlab de)), "erwerbs") > 0

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 20

Example 7: Selection of cases where the contents of a string variable begins and ends with
specific strings

..1f usubstr(varname,1l,2)=="ts" & usubstr(varname, ustrlen(varname)-1, 2)== "gl"

The condition checks, as in the previous example, the first two characters of varname. Since
the contents of varname is of variable length, the last two characters cannot be determined
by a constant position specification. Instead, the length of varname is used to determine the
position of the last two characters. The return value of the function ustrlen(...) is the position
of the last character of varname, and the next to last character has the position: length of
varname minus 1.

=» complex conditions are easier to handle and test when the components are stored in

macros:
local condl ""usubstr (varname, 1, 2)=="ts""'
local cond2 ""usubstr (varname, ustrlen(varname)-1, 2)== "gl""'

ed if ‘condl' & “cond2'

PLEASE NOTE: Strings that contain quotes must be enclosed by so-called compound quotes
when assigned to a macro (see the yellow marked outer characters in the first two lines of
the syntax above). Compound quotes are not required to expand these macros, as can be
seen from line 3 of the syntax.

=» For further details and more string functions see Stata command help string functions.

5.2 Complex selection methods for source variables using the metafile

Please note: the following examples are not significant in terms of substance; they serve
only as a means to demonstrate complex selection methods. The examples build on each
other, i.e,. a data subset is varied and used consecutively for the examples. These have been
prepared with a metafile over all start cohorts, generated with the NEPS-SUF delivered in
May/June, 2023.

Example 8: Select source variables covering a certain topic using the question number in the
questionnaire.

ed if ustrpos(iquestno, "261") == 1

The above syntax selects all variables which have a question number in the questionnaire
beginning with the characters "261".

Please note: the condition only captures variables that have a question number in the ques-
tionnaire. If the aim is to select all variables covering a topic, check in a second step the
whole possible variable field by means of the record number Ifn (see section 5.4.2).

Example 9: The subset from example 8 is to be reduced in a way that it only contains source
variables surveyed in at least 5 waves since wave 3, and which have at least 500 non-missing
cases.

NOTE—potential pitfall: You might be tempted to put the condition as follows:

. if wavemin >= 3 & nwaves >= 5

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 21

However, this would be wrong, as the condition excludes those variables that comply with
the selection criterion but were also surveyed in waves earlier than the 3rd.

Instead, an auxiliary variable is generated that indicates how often a variable has been
surveyed since the 3rd wave:

capture drop hl
egen hl = anycount (wav3-wavll), values (1)

Thereafter, the auxiliary variable h1 can be used to state the selection criterion:

ed if ustrpos(iquestno, "261") == 1 & hl > 4 & nonmis >= 500

For the following, the conditions that produce the above subset are stored in a macro:

local condl " ustrpos(iquestno, "261") == 1 & hl > 4 & nonmis >= 500"'
ed lfn-iquestno varlab en nobs nonmis unigvalpos valunigpos vallabset ///
nwaves-waves if “condl'

=» local macros have to be defined anew with each run of the syntax. You can define a
global macro instead that stays alive throughout the whole Stata session:
global condl " ustrpos(iquestno, "261") == 1 & hl > 4 & nonmis >= 500"’

ed lfn-iquestno varlab_en nobs nonmis unigvalpos valunigpos vallabset ///
nwaves-waves 1f Scondl

Example 10: Show potentially similar variables in different start cohorts.

The subset from example 9 stays in memory, but is sorted differently. Furthermore, the
order of the displayed variables is changed:
sort varlab en stcohor datenfile

ed varname-iquestno varlab en stcohor vallabset datenfile nobs nonmis ///
unigvalpos valunigpos nwaves-waves if S$Scondl

The inspection of the displayed data shows that same or similar variables which have a
guestion number in the questionnaire beginning with "261" occur in several start cohorts.
Indicators for sameness or similarity are the variable label, the question number in the
guestionnaire, the attached value label set, the number of non-missing levels, and the single
levels (varlab_en, iquestno, vallabset, uniqvalpos, vall - val100).

Example 11: Further reduction of the subset to the source variables which occur in each of
the start cohorts 4, 5 and 6.

Note: The example presumes that variables with the same contents in the various start
cohorts have the same question number in the questionnaire. This is usually true, but there
are exceptions, for instance when particular topics have been shifted to different modules.

Step 1: Checking which start cohorts are present in the subset:

fre stcohor if $condl

Step 2: Identification of the source variables in the subset which occur in each of the three
start cohorts 4, 5 and 6:

global cond2 ///

" (ustrpos (stcohor,"4")>0 | ustrpos(stcohor, "5")>0 | ustrpos(stcohor, "6")>0) "'
capture drop cl

gen byte cl = cond(Scondl & S$cond2, 1, 0)

sort cl iquestno varlab en stcohor

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 22

capture drop c2
by cl iquestno varlab en: ///

gen byte c2 = cond(stcohor != stcohor[n-1] & cl == 1, 1, 0)
capture drop stc
by cl iquestno varlab en: egen stc = total(c2)

Explanation: The conditions cond1 and cond2 are mirrored in the auxiliary variable c1 (c1is 1
if cond1 and cond2 is true, else c1 is 0). After that, the metafile is sorted by c1, question
number, variable label, and start cohort. As stcohor is the last sorting criterion, the different
starting cohorts of each group formed by c1, iquestno, varlab_en follow one another. The
auxiliary variable c2 is 1 whenever the start cohort changes within the group, else c2 is 0. stc
counts the number of changes within a group. Source variables occuring in each of the three
start cohorts 4, 5 and 6 have the value 3 in stc, which can be verified by

edit stcohor datenfile varname varlab de iquestno if stc == 3

5.3 Exporting elements of the data subset to the Stata output or to a text file

The easiest way to export the content of the data editor is to use the clipboard, as described
above. A more sophisticated method to export subsets of the metafile to the Stata logfile or
to a text file is to use Stata syntax.

Continuation of Example 11

In a first step we mark the subset using a flag variable and chose an appropriate sort order
for the output. The use of a flag variable makes it easier to handle the subset.

capture drop f1l
gen byte fl1 = cond(stc == 3, 1, 0)
sort datenfile iquestno varname

Note: You could use stc == 3 instead of f1 == 1 in the following syntax, but at this point
the use of a flag variable to identify a subset of the metafile is to be demonstrated.

After that, the selected characteristics are printed out as follows:

5.3.1 Printing to the Stata logfile
capture log close

log using "<path>/testl.log", replace

local n = N
forvalues 1 = 1(1) 'n' {
if f1[°1'] == 1 {

local file = datenfile[1i']
local svn = ivarname[i']
local vn = varname[i']
local gu = questen|[i']
display " "
display " file' instr: “svn' suf: “vn'"
display ‘"‘qul"l
display " "

}

capture log close

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 23

Explanation: In a loop over all observations of the metafile the program checks if the
respective observation is part of the subset. If it is, the name of the source file, the variable
name in the questionnaire, the variable name in the SUF, and the German question text are
written to the log file.

=» If the string that is to be printed to the logfile using the Stata command display contains
guotes, the complete string has to be enclosed by compound quotes. for example:

local condl " ustrpos(iquestno, "26") == 1 & hl > 4 & nonmis >= 500"'
display ""condl"'

5.3.2 Printing to an external text file

Printing to an external text file allows for a more sophisticated layout of the output:

capture file close dl

file open dl using "<path>/test2.txt", write replace

file write d1 n

file write dl "#########4HHHHHFHHHHHHAHERHFHHHEHFHEHHERSHERHFHSHSHSHERHESSHSR"
file write dl "### List of variables which meet criterion xyz and are #H#"
file write dl "### surveyed in at least 5 waves since the 3rd wave FH#"
file write dI "######4##4HH44HFHHHHHHAHEHHHHHHAHFHRHHARAHERFFHHHAHF SRR HHSSHER"
file write dl n

local n = N
forvalues 1 = 1(1) 'n' {
if F1[0i'] == 1 {

local file = datenfile[i']
local svn = ivarname[1i']
local vn = varname[1i']
local qu = questen|[i']
file write d1 " “file' "™ n
file write d1 " Variable name: “vn' " n
file write d1 " Varname in the questionnaire: ‘svn' " n
file write d1 " ‘qu' " n

file write dl1 n
}

}
file close dl

Explanation: The external text file is defined by the file open command, followed by a text to
indicate the content of the text file. Then, in a loop over all observations of the metafile, the
selected information is written to local macros and transferred to the external text file. You
can shape the output using blanks, and _n to create empty lines.

=» If the string that is to be printed to the external text file using the Stata command file
write contains quotes, the complete string has to be enclosed by compound quotes, for
example

file write dl1 " replace hl=0 if wustrpos(stcohor, "1") > 0 "' n

Enclosing the text in compound-quotes when it is not required, does not cause an error, nor
any other problem.

Excerpts of the resulting text file are shown in Figure 2.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 24

Figure 2: View of the text file generated with the above Stata syntax

List of variables which meet criterion xyz and are
surveyed in at least 5 waves since the 3rd wave H#H#

SC4_spEmp_D_13-6-0
Variable name: ts23558
Varname in the questionnaire: etmod
[AUTO] Episode mode

SC4_spEmp_D_13-0-0
Variable name: ts23204
Varname in the questionnaire: etdbs
What professional status did or do you have there exactly?

SC4_spEmp_D_13-0-0
Variable name: ts23209
Varname in the questionnaire: etselbl
Were you self-employed in a freelance profession, e.g., physician, lawyer or architect or self-employed in agriculture or another area?

SC4_spEmp_D_13-0-0
Variable name: ts23211
Varname in the questionnaire: etselb3
What kind of self-employment was that in the beginning?

SC4_spEmp_D_13-0-0
Variable name: ts23214
Varname in the questionnaire: etaus
What kind of employment is/was it?

SC4_spEmp_D_13-0-0©
Variable name: ts23215
Varname in the questionnaire: etba
Was this a one-euro job or an occasional job?

SC4_spEmp_D_13-0-0
Variable name: ts23217
Varname in the questionnaire: etsais
Did you work there as a seasonal worker?

Stata do-files can be generated in the same way, see chapter 5.5.

5.4 More tips on data selection

5.4.1 Using a flag variable to mark selected observations

In the previous example a flag variable is used to mark whether an observation meets the
conditions cond1 and cond2. There are more cases where the use of a flag variable makes
sense. Some selection sets are difficult to summarize in a clear selection criterion. For
example, a selection criterion may select some variables that do not belong to the desired
hit list. Or the selection criterion is already very complex, but further conditions have to be
added to achieve the desired result.. Here it is useful to generate a flag variable that
indicates whether a variable belongs to the selection set.

While it is possible to change the flag variable manually in the data editor, it is strongly re-
commended not to do so. Instead, you should document all steps in a syntax file (Stata
command replace), in order to make the data processing reprocucable and traceable in the
future.

If, however, the only purpose of the flag variable is to write out a do-file in which the flagged
variables are listed, the resulting do-file is also the process documentation. In this case the
flags can be set manually in the data editor, provided that you do not need to repeat the
process.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 25

5.4.2 Using the consecutive observation number (/fn) to identify observations that belong
to the same topic

When aiming to select variables within a source file that belong to a particular subject area,
it is recommended to check if the record number of the subset shows gaps. These may
indicate that source variables have been inadvertently skipped. This can happen if a
selection criterion is used which is not available for all source variables (e.g. iquestno, the
question number in the questionnaire).

To control for this, display the related observations in the data editor, that is, the observa-
tions with record numbers that lie within the margins of the record numbers of the selected
subset, plus some adjacent observations. If the lowest record number of your subset is
10889 and the highest 10960, display all observations with a record number from 10800 to
11000 in the data editor, and check if relevant source variables are hidden in the gaps of the
record numbers in the subset. If this is the case, add them to your data subset by setting a
flag, as described in the preceding section.

5.5 Collecting the variable names in the selected subset for further use

The names of the source variables that have been selected from the metafile can be
collected and used in Stata commands or in Stata do-files. Users may for example wish to
use only some variables of a source file, rename a lot of source variables, or compose a data
file for analyses from variables of various source files.

To this end we apply the Stata-command levelsof, which stores the distinct values of a
variable in a macro list. After all, the distinct values of the metafile variable varname are just
the names of the NEPS source variables.

=» ATTENTION: if a variable has a great number of levels (as is the case with varname) the
maximum length of macros in your Stata application might be exceeded. See Stata
command help limits on how to determine and increase the maximum macro length.

5.5.1 Case 1: All required variables are in the same source file

In a first step we assume that the source variables in the selected subset are to be found in
one and the same source file. The subset of the metafile has been marked by the flag
variable f2 previously:

quietly levelsof varname if f2 == 1, clean local (vars)

™

global myvars " vars
display "${myvars}"

Explanation: The first line of the syntax assigns the names of the flagged source variables to
the local macro vars. The option clean achieves the elimination of the quotes that otherwise
enclose the variable names in the macro. However, levelsof can only produce local macros.

To make the list of the source variable names available outside of this procedure, it is
assigned to the global macro myvars in the second line of the syntax.

After that, the names of the selected variables are available for further processing.

The list can be supplemented by additional variables, such as weight factors or identifiers.
These can be marked using a flag variable, or added to the macro list directly:

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 26

global allmyvars "ID t splink sample ${myvars}"
display "${allmyvars}"

The resulting macro list can now be used as a variable list when working with the related
source data. It can, for example, load a subset of variables from the data file <name of the
data file> into the working memory:

use ${allmyvars} using <name of the data file>, clear

5.5.2 Case 2: The required variables are in several different source files

The following example demonstrates how to proceed when the selected variables are loca-
ted in several different source files.

The aim is to compose a particular file for analyses: Selected information from different
NEPS episode files and the Basic file are to be merged to the Biography file. To this end, a
Stata do-file is generated by Stata syntax from the metafile information.

The example uses only data from the start cohort 6.

use <metafile>, clear

keep if ustrpos(stcohor, "SC6") > 0

In a first step, the desired variables are selected using the metafile and a flag variable.

So that the example is reproducible by the reader, the flag variable is set with a series of
replace commands. In practise this is set manually. It is recommended that you create a
convenient view of the required metafile information using edit and format-commands, for
example

datenfile %30s

varname %14s

varlab de varlab en %50s
waves %20s

unigvalpos %7.0g

nonmis %10.0g

format
format
format
format
format
format

edit datenfile fl varname varlab de nobs nonmis unigvalpos waves varlab de ///

vall-vall00 labl-1abl00

Generating the flag variable:

capture drop fl
gen byte fl = 0

Setting the flag-variable f1 by replace commands:

replace fl1 = 1 if varname == "t405000 g2" & datenfile == "SC6 Basics D 13-0-0"
replace fl1 = 1 if varname == "t510011 gl" & datenfile == "SC6 Basics D 13-0-0"
replace f1 = 1 if varname == "t700001" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "t70000y" & datenfile == "SC6 Basics D 13-0-0"
replace f1l 1 if varname == "t731301 gl" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "t731351 gl" & datenfile == "SC6 Basics D 13-0-0"
replace f1l 1 if varname == "t741001" & datenfile == "SC6 Basics D 13-0-0"
replace fl1 = 1 if varname == "tx20001" & datenfile == "SC6 Basics D 13-0-0"
replace fl1 = 1 if varname == "tx20002" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "tx20003" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "tx27000" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "tx28101" & datenfile == "SC6 Basics D 13-0-0"
replace fl 1 if varname == "tx28102" & datenfile == "SC6 Basics D 13-0-0"
replace fl1 = 1 if varname == "ts23201 g2" & datenfile == "SC6 spEmp D 13-0-0"

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS

27

replace fl1 = 1 if varname == "ts23204 ha" & datenfile == "SC6 spEmp D 13-0-0"
replace fl1 = 1 if varname == "ts23219 gl" & datenfile == "SC6 spEmp D 13-0-0"
replace fl = 1 if varname == "ts23223 gl" & datenfile == "SC6 spEmp D 13-0-0"
replace fl1 = 1 if varname == "ts23411 vlgl" & datenfile == "SC6 spEmp D 13-0-0"
replace fl = 1 if varname == "ts23241" & datenfile == "SC6 spEmp D 13-0-0"
replace fl1 = 1 if varname == "ts23310" & datenfile == "SC6 spEmp D 13-0-0"
replace fl = 1 if varname == "ts23320" & datenfile == "SC6 spEmp D 13-0-0"
replace fl1 = 1 if varname == "th27100" & datenfile == "SC6 spParLeave D 13-0-0"
replace fl1 = 1 if varname == "th27101" & datenfile == "SC6 spParLeave D 13-0-0"
replace fl1 = 1 if varname == "ts11103 gl" & datenfile == "SC6 spSchool D 13-0-0"
replace fl1 = 1 if varname == "ts11204 ha" & datenfile == "SC6 spSchool D 13-0-0"
replace fl1 = 1 if varname == "ts11209" & datenfile == "SC6 spSchool D 13-0-0"
replace fl1 = 1 if varname == "ts25205" & datenfile == "SC6 spUnemp D 13-0-0"
replace fl1 = 1 if varname == "ts25206" & datenfile == "SC6 spUnemp D 13-0-0"
replace fl1 = 1 if varname == "ts25207" & datenfile == "SC6 spUnemp D 13-0-0"
replace fl1 = 1 if varname == "ts25209" & datenfile == "SC6 spUnemp D 13-0-0"

Thereafter the do-file to join the selected variables is generated. The syntax determines the
involved source files, then loops over these while compiling and out-writing the diverse

elements of the do-file.

capture file close dl
file open dl using "<path/name of the do-file to be created>", write replace

local path ""<path to the NEPS data files>"'

local g = char(34) /* double quotes */

local strl "use "q' path'SC6 Biography D 13-0-0.dta’q', clear" /* Masterfile */
file write d1 ""'strl'"' n

file write dl1 n

/* Determine source files and index of the loop */
quietly levelsof datenfile if f1 == 1, clean local (files)

local nf : word count “files'

/* compile the merge-commands in a loop over the source files */

forvalues i = 1(1) nf' {
local £ : word "i' of “files'
quietly levelsof varname if fl==1 & datenfile == " f'", clean local (vars)

local keyvars "ID t splink"
local mtype "1l:m"
local keepus "keepusing(subspell ‘vars')"

local keepstr "keep if merge == 1 | (_merge == 3 & subspell == 0)"
local dropstr "drop merge subspell"
if ustrpos (" f'", "Basics") > 0 {

local keyvars "ID t"

local mtype "m:1"

local keepus "keepusing(vars')"
local keepstr "keep if merge == 3"
local dropstr "drop merge"

file write dl '"merge ‘mtype' ‘keyvars' using 'q'‘path'‘f''q', ‘keepus'"' _n
file write dl ""“keepstr'"' n
file write dl ""‘'dropstr'"' n

file write dl1 n

}

file write dl ""save “q' path'myworkfile'q', replace "'
q p Yy q p

/* ending with a blank line (mandatory) */
file write dl1 n
file close dl

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 28

Explanation:

The Biography-file is the masterfile to which the selected data of the Basic file and the
diverse episode files are merged.

Initially, the do-file is defined, which is a text file that is addressed by Stata with a file handle,
here called d1 (see section 5.3.2). The do-file can be named mergetogether.do, for example.

The path to the NEPS source files is assigned to a local macro because it is needed several
times throughout the syntax. In the example, the resulting analyses file is put out to the
NEPS source file directory. If you want it to be put out to a different directory, you can either
define a second path macro or adapt the save command at the end of the syntax
accordingly.

The command to use the master file is written to the first line of the created do-file.
Next, the required merge commands are compiled in a loop over the involved data files.

The data files are determined using the command /evelsof, (see section 5.5.1). The index of
the loop is obtained by counting the number of data files in the macro list files.

Within the loop, the file-specific variable lists are assigned to the macro vars, and the other
components of the merge commands to the macros keyvars, mtype, keepus, keepstr and
dropstr.

The Basic data file must be treated separately using an if construction, since the key
variables and other components of the merge commands are different from the commands
for the episode files.

In the last part of the syntax within the loop, the defined do-file is filled in line by line.

The save command for the resulting analyses file and a closing blank line (which seems to be
mandatory to make the do-file executable) are written to the do-file outside the loop.

=» It is often difficult to put the syntax for double quotes within macro contents correctly. A
workaround is to assign the double quotes (ASCIl Code and Unicode 34) to a macro, as is
done in the above syntax.

=» Pay attention to the enclosing compound quotes in the file write-commands, they are
required!

=» The last line that is written to d1 before it is closed has to be a blank line - file write _n -
to make the do-file executable.

=» If the lines in the resulting do-file are too long to fit the screen width, you can include line
breaks manually (add the string /// to the end of the line that is to be continued). In principle
this could be done by syntax, but it is hardly worth the effort of programming. (In the actual
Stata version 17 line breaks seem not to be required any more).

The examples of Stata syntax in this chapter demonstrate the use of the metafile generated
by NEPS-Metafile.do. They are intended to prompt further applications of your own.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 29

A last tip:

=» If you adapt the examples to your own requirements, it can be helpful to enclose your
syntax in the trace on / trace off commands:

set trace on
set tracedepth 1

<Syntax>

set trace off

By doing so, locations of possible errors are marked in the output.

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 30

6. Appendix 1: Flow chart of NEPS-Metafile.do

Definition of Parameters
a) automatically
b) manually

- Section 3.2 of this documentation

Determination of the directory structure
of the NEPS SUF Files

Loop over the
source
directories

T
Processing a data file

—————— — — — —

Determination of the wave indicators
(if there are any)

Loop over the

Segmentation of large files into portions L
datafilesin a

directory
T P PR PR T
: 1
: 1
|
Loop over the !
portions Of a ----------------------------------- ! I
- i
file i i
.
! I
Examination of each variable Loop over the
variables of a

Determination of its data type file

Procedures for string Procedures for
variables: Extraction | numerical variables:
of Indicators Extract. of Indicators

(Continued on next page)

Klaudia Erhardt, NEPS-Metafile.do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS 31

(Continued from previous page)

: ! ! !
: ! i i
: ! ! !
: ! i i
1 I
i Transfer of the extracted indicators to list Loo'p over the i
. macros / a series of list macros variables of a l
. file !
: ! ! !
. ! I i
i i
Loop over the i ! Loop over the
portionsofa | [rTrTrmTrTmrmmrmrmmmrmsmmemmemes ' I source
file ! directories
|
i
i
I
i
I

Generation of a portion-specific metafile

Transfer of the content of the list macros to

) . . . Loop over the
the variables of the portion-specific metafile

data filesin a

Addition of portion-specific characteristics directory
T
1
Lt rreme e m e s ;
1
1
!
Assembly of the portion-specific metafiles to !
a file-specific metafile !
|
1
______________________________ H

Assembly of the file-specific metafiles of a
directory

Assembly of the directory-specific metafiles
to the overall metafile

Modification / generation of variables

Save overall metafile

Write runtime of the job and information on
captured errors to the logfile

7. Appendix 2: Complete syntax of NEPS-Metafile.do

/* NEPS-Metafile-Do-File to generate a Metafile for the NEPS-Scientific-Use-Files
Version 03-00
Author: Klaudia Erhardt
last updated: 2023-09-27
feedback and questions to: erhardtk@gmx.de*/
NEPS-Metafile.do is licensed under CC BY-NC-SA 4.0 (http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)

set output error

/*

Version history

V02 Characteristic NEPS instname replaced by characteristic NEPS alias
IF YOU ARE WORKING WITH EARLIER SUF DATA THAT STILL HAS THE CHARACTERISTIC "NEPS instname", search
and replace the string [NEPS alias] with [NEPS instname]

V03 Added new variable dsign to the metafile, containing the data-signature of the source file

Please note:

Changes to adapt the do-file to your local environment and preferences are to be done in part B)
Changes elsewhere in the do-file neither allowed nor necessary !!!

Approximative runtime of this job:
ca. 0:40 - 2:30 hrs when applied to all SUFS of the 4 start cohorts
(depends on endowment of the computer and workload of the server)

*/

SR R R R R
FHEF A FHEF A
HEHHHAE A A #HE A) AUTOMATICALLY DEFINED PARAMETERS - FHF A
A no changes please!!! F TR E kL A
clear

set more off
set varabbrev off, permanently

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 32

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 33

/* Measuring the runtime of the program */
timer clear

timer on 1

tempname time

scalar “time' = 0

/* prefix for statald4+ string functions */
local u ""
if c(stata version)>=14 ({

local u "u"

}

/* Date specification, is appended to resulting files' names */
local datum : display %td CY-N-D date("$S DATE", "DMY")
local datum = ‘u'strtrim(" datum'")

VAR i i i

FHEAHEE SRR A AR AR A FHEFHE R HHH AR AR A R R R R R
FHEH A 44444 B) MANUALLY DEFINED PARAMETERS S i i
g sssadadiasaaad i inatdi (users' input) CR R R A

/* locals in this section are defined with examples, to be replaced by the user.
See chapter 3.2 of 'NEPS-Metafile-Do - a Do-File to Generate a Metafile on the Scientific Use Files of the NEPS' */

VR T 223253 EEa 1.) Source files FHEFH AR xS/
local files "*.dta" /* selection criterion within the files of the source directories
you may use wildcards to include only a subset of files.

If empty or not a valid Stata file specification, default "*.dta" is put into effect. */

/* Source directories */

local rootdir "M:\user\myname\SUF\Daten\" /* Main directory containing either the SUF-files or Subdirectories */

local subd "*" /* Wildcard to denominate the SUF-Sub-Directories, if there are any, may stay empty if
source files are in rootdir */

local subsubd "Statal4" /* Data directory within each SUF-directory - has to be named alike for all

SUF-directories, may stay empty i1if source files are in rootdir or in subd */

A S EEE; 2.) Resulting files G o

/* Paths to resulting files' directories - both are mandatory, but may contain the same path specification
Must be different from source directory, otherwise in a next run the resulting metafile will be included */

local pfadld "M:\user\myname\output" /* local directory for resulting metafile */
local pfadlo "M:\user\myname\output" /* local directory for logfile */

/* Definition of resulting file names und data labels */

local we "NEPS-SUF " /* we and wel are labels for version and start cohorts. Will be appended to the
resulting files' names. Must comply with the file name conventions of Stata,
i.e. no period characters. May stay empty */

local wel "SCl-2-3-4-5-6_"

local result "metaf “we' wel' datum'" /* name of the resulting metafile */

local reslab "metafile NEPS-SUF from NEPS-metafile v03-00.do" /* label to be attached to the resulting metafile,
may stay empty */

local 1g "metaf “we' wel' datum'.log" /* name of the resulting log-file */

VAR S22 3544 00EE1 3.) Further specifications FHEFHHH A </

/* Specification of wave indicators */

local wavel "1" /* earliest wave */

local wave2 "18" /* newest wave in any of the included source files, wavel <= wave2 is mandatory */

/* Priority list of possible wave indicators: highest priority first. Usually you don't have to change this
but if ever additional wave indicators turn up in the data you may add them to the priority list */

local syrlist "wave"
/* Specification of missing values */

local nepsmissundc "-51 -32 -19 -4" /* missing codes not contained in nepsmiss.ado from LifBi-Nepstools */
local nepsmissdc "-99/-90 -56/-52 -29/-20 -9/-5" /* missing codes, contained in nepsmiss.ado from LifBi-Nepstools */

local nepsmissings " nepsmissdc' ‘nepsmissundc'" /* Don't change this */

/* Size of portions (usually you don't have to change this) */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 34

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 35

local port 50 /* Number of variables per portion for segmented processing of the data files.
Larger portions result in a longer runtime of the job. */

Atz ssssssdisataadadddsi FHEFHAE SR A AR RS RS R R R R
FHAFFHA A4 #HF END: DEFINITION OF PARAMETERS FHAAA A A A
FHAAAE A FHAAAE A A

FHAF A R Y/
/* no changes in the follwing syntax required !!!!I!Ptrrrrrrrrnd */

[R R R

FHE AR AR AR AR FHE AR AR AR AR AR AR
FhAFFRAFFFFFFHFAFAFA S AR FEAFESF START OF THE PROGRAM FHE AR F AR AR AR AR AR AR AR AR AR
FHEFH AR AR AR AR i ddsdddddsasata st REEEEEEEEEEEEE AN
VA T 223233 E: Default definition of macros - no changes please !'!! #####dFfdFfdFddaddaidass ~/

/* path standardization */

local pflist "data rootdir subd subsubd pfadld pfadlo"
local nps : word count "pflist'

forvalues n = 1(1) nps' {

local mstr : word 'n' of "pflist’

local str " ‘mstr''"
while “u'strpos (" str'", "\") > 0 {
local str = ‘u'subinstr (" str'","\", "/", 1)

}
if ‘u'strpos (" str'", "//") > 0 {

local tstrl = “u'substr(" 'str'",1,2)
local tstr2 = “u'substr (" str'",3, u'strlen(" str'")-2)
while ‘u'strpos (" tstr2'", "//") > 0 {
local tstr2 = “u'subinstr (" tstr2'","//", "/", 1)
}
local str = " “tstrl'" + "“tstr2'"

}

local str = “u'strreverse(" 'str'")

if “u'strpos (" str'", "/") == 1 {

local str = ‘u'subinstr (" str'", "/, "', 1)
}
local str = “u'strreverse (" str'")
local "mstr' "'str'"

}

/* set default values */

if "u'strlen(" files'") == 0 | “u'substr(‘u'strreverse(" files'"), 1, 4) !'= "atd." {
local files "*.dta"
local message " " n ///
"the default file specification "files' is used, as there has been made " n ///
"no (valid) file specification " n ///

display as err " message'"
local message ""

}

if strlen(" 'port'") == 0 {
local port 50

}

if “port' == 0 {
local port = 50

}

local nw = ‘wavel2'-‘wavel'+l /* ATTENTION: don't change the position of this specification: it must come before the
following definition of wavel and wave2! Otherwise a variable "wav0" will be
generated */
if “u'strlen(" wavel'") == 0 {
local wavel "O"

if “u'strlen(" wave2'") == 0 {
local wave2z "0O"

if ‘wave2' - “wavel' < 0 {
local abbruch =1
local message " " n///
"Error in the wave specification: wavel is greater than wave2 " n ///
""The Do-file stops. Please correct the macros "wavel" and "wave2" in Section B) "' n ///

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 36

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 37

"of the parameter definition " n ///
display as err " message'"
exit
}

/* Initialization of nsyrl in case wavel and wave2 are defined empty */
local nsyrl O

VAR £ 22322224 Identification of the input and output subdirectories and files FHEH SRS
/* a) Output Directories */
if “u'strlen (" pfadld'") > 0 {

quietly capture cd " pfadld'"'

if rc == 0{

local pfadld " pfadld'"
local abbruch = 0

}

if rc != 0{
local abbruch =1
local messagel " " n ///
"You named an output-directory for the resulting metafile that does not exist. " n ///
""The do-file stops. Please correct the macro "pfadld" in Section B)"' n ///
"of the parameter definition " n///
}
}
if “u'strlen (" 'pfadld'") == 0 {
local abbruch =1
local message2 " " n///
"You did not name an output-directory for the resulting metafile " n///
""The do-file stops. Please correct the macro "pfadld" in Section B)"' n ///
"of the parameter definition. " n ///
}
if “u'strlen (" pfadlo'") > 0 {
quietly capture cd """ 'pfadlo'"'
if rc == 0{

local pfadlo " 'pfadlo'"
local abbruch = 0

if rc != 0{
local abbruch =1

local message3 " " n ///
"You named an output-directory for the logfile that does not exist. " n ///
""The do-file stops. Please correct the macro "pfadlo" in Section B)"' n ///
"of the parameter definition. " n ///
}
}
if "u'strlen (" pfadlo'") == 0 {
local abbruch =1
local message4d " " n///
"You did not name an output-directory for the logile " n///
""The do-file stops. Please correct the macro "pfadlo" in Section B)"' n ///
"of the parameter definition. " n ///
}
if “u'strlen (" ‘message3'") > 0{
display as err " message3'"
}
if “u'strlen (" ‘messaged'") > 0{

display as err " messaged'"

if “u'strlen(" ‘messagel'") > 0{
display as err " messagel'"

if “u'strlen (" ‘message2'") > 0{
display as err " message2'"

if ‘abbruch' == {
local messagel ""
local message2 ""
local message3 ""
local message4
exit

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* b) Source Directories */
if “u'strlen(" subd'") == 0 & "u'strlen(" subsubd'") == 0 {
local data " rootdir'"

local switch = 0

if “u'strlen (" subd'") > 0 {
local switch =1

if “u'strlen(" subd'") == 0 & "u'strlen (" subsubd'") > 0 {
local abbruch =1
local switch = -1
local message6 " " n///
"For the source data files you specified a subdirectory of the SUF-directories, " n ///
"but you did not specify the SUF-directories. This is invalid. " n///
""The do-file stops. Please correct the macro "subd" or the macro "subsubd" "' n ///
" in Section B) of the parameter definition. " n ///
}
if “switch' == {
if “u'strlen (" data'") > 0 {
quietly capture cd “"“data'"'
if rc == 0{

local data " ‘data'"
local k1 =1
local nrd =1
local infile : dir "'data'™ files ""“files'"', respectcase
local a : word count “infile'
if "a' > 0 {
local abbruch = 0

if "a' == 0{
local abbruch =1
local message " " n///
"In the source-directory “data' no Stata file has been found that corresponds " n ///
"to your specification “files' " n ///
""The do-file stops. Please correct the macro "files" or the macro "rootdir" "' n ///

" in Section B) of the parameter definition. " n ///

"w "w

}

if rc != 0{
local abbruch =1
local message " " n ///
"The source directory you specified has not been found. " n ///
""The do-file stops. Please correct the macro "rootdir" in Section
" of the parameter definition. " n ///

1] 1]

}

if “u'strlen(" 'data'") == 0 {
local abbruch =1
local message " " n ///
"You did not specify a source directory. " n ///
""The do-file stops. Please correct the macro "rootdir" in Section B)
" of the parameter definition. " _n ///

if “switch' == 1 {

/* Does rootdir exist? */
if "u'strlen (" rootdir'™) > 0 {
quietly capture cd " rootdir'"'
if rc == 0{ /* rootdir has been found */
local abbruch = 0

/* If yes: do the SUF-directories in rootdir exist? */

local alld : dir " rootdir'" dirs " 'subd'", respectcase /* generat a list of the SUF-Directories */

if "u'strlen(" alld'"') > 0 {
local alld : list sort alld
local nrd : word count “alld’
local k1 = "nrd'
local abbruch = 0
local message " " n ///
""The directories “alld' will be processed "'
noisily display " message'"
local message ""

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

B) wa

wi

n ///

n///

n ///

40

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 41

/* If yes: Loop over the SUF-Directories:
If subsubd is not specified, check if there are any Stata files corresponding to "files"
in the SUF-Directories and compile a list of SUF-Directories where there were found none.
If subsubd is specified, check if it is unique, if it exists in each of the SUF-Directories,
and check if there are any Stata files corresponding to "files".
And compile lists of the Directories where subsubd is not unique or contains no Stata File
defined by "files".

*/
if ‘u'strlen(" subsubd'"') == 0 {
local nulliste ""
forvalues 11 = 1(1) k1 {
local dirl : word “11' of "alld’
local infile : dir " dirl'"™ files """ files'"', respectcase
local a : word count “infile'’
if "a' == 0{
local nulliste ""'nulliste' "“dir1i'"™!'

}
}

/* Program stops if there is not at least 1 SUF-Directory containing "files"-Stata-files */

if "u'strlen(" nulliste'"') > 0 {

local nnull : word count "nulliste’

if "nnull' == “nrd' {
local abbruch =1
local message4 " " n ///
""In the Source-directories “nulliste' "' n ///
"no Stata file corresponding to ‘files' has been found. " n ///
""The do-file stops. Please correct the macro "subsubd" in Section B) "' -n ///
"of the parameter definition or check the structure of the " n ///
"Source directories." n ///

"w "w

}

if "nnull' < "‘nrd' {
local messagex " " n///
""The source directories ‘nulliste' "' n ///
"are excluded from being processed as they do not contain a Stata file " n ///

"w

"corresponding to “files'

"w "w

noisily display " messagex'"

if

‘u'strlen(" subsubd'"') > 0 {

local nulliste ""
local dupliste ""
forvalues 11 = 1(1) k1’ {

local dirl : word "11' of "alld’

local subdir " ‘rootdir'/ dirl'"

local allsd : dir " subdir'" dirs " subsubd'", respectcase
local allsd : list sort allsd

local nsubd : word count “allsd’

if “nsubd' =

=0 {
local nulli

ste ""‘nulliste' "‘dirl'""?'

}

if “nsubd' > 1 {
local dupliste """ dupliste' " dirl'"™"™!'
}

‘u'strlen(" 'nulliste'"') > 0 {

local abbruch =1

local messagel " " n ///

"There is no subdirectory “subsubd' in the following SUF-directories: "
" “nulliste' "' n ///

""The do-file stops. Please correct the macro "subsubd" in Section B) "
"of the parameter definition or check the structure of the " _n ///

"Source directories." n ///
" "

‘u'strlen (""" dupliste'"') > 0 {

local abbruch =1

local message2 " " n///

"The subdirectory " subsubd' is not unique in the following directories:"
" “dupliste' "' n ///

""The do-file stops. Please correct the macro "subsubd" in Section B) "'
"of the parameter definition or check the structure of the " _n ///
"Source directories.” _n ///

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

n ///

n ///

n ///

n ///

42

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

if “u'strlen(" alld'"') == 0 { /* no SUF-Directories in rootdir */

local abbruch =1

local message3 " " n ///

"The subdirectories “subd' in directory “rootdir'
""The do-file stops. Please correct the macro

have not been found.
"subd" in Section B)

"of the parameter definition " n ///
}
}
if rc != 0{ /* rootdir has not been found */
local abbruch =1
local message " " n ///
"You did not specify a valid rootdir-name. " n ///
""The do-file stops. Please correct the macro "rootdir" in Section B) "'
"of the parameter definition " n ///

}

} /* End of loop: does rootdir exist? */

if “u'strlen (" rootdir'"™) == 0{
local abbruch =1
local message5 " " n ///
"You did not specify a rootdir-name. " n ///
""The do-file stops. Please correct the macro "rootdir" in Section B)
"of the parameter definition " n ///
nw nw
}
} /* End of loop: if switch == 1 */
if “u'strlen(" 'message'"') > 0 {
display as err " "message'"

if ‘u'strlen(" 'messagel'"') > 0 {

"

"o ///
" _n ///

n ///

n ///

43

display as err

"

‘messagel'"

if "u'strlen(" 'message2'"') > 0 {
display as err " "message2'"
}
if “u'strlen(" 'message3'"') > 0 {
display as err " "message3'"
}
if "u'strlen(" 'messaged'"') > 0 {
display as err " "messaged'"
}
if ‘u'strlen(" 'message5'"') > 0 {
display as err " "message5'"
}
if “u'strlen(" 'message6'"') > 0 {
display as err " ‘message6'"
}
if ‘abbruch' == 1 {
local message ""
local messagel ""
local messagez ""
local message3 ""
local messaged ""
local messageb5 ""
local messagec ""
exit
}
capture log close
log using "‘pfadlo'/ 1g'", replace
local k1 = "nrd'
forvalues 11 = 1(1) k1’ {
if “switch' == 1 {
local dirl word "11' of ‘alld'
local data " 'rootdir'/ dirl'/ subsubd'"
/* in case subsubd is empty,
local str = "u'strreverse (" ‘data'")

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* loop over the SUF-Directories */

the last Slash has to be removed */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

if ‘u'strpos("'str'", "/") == 1 {
local str = ‘u'subinstr (" 'str'", "/", """, 1)
local data = "u'strreverse (" str'")
}
}
local infile : dir "'data'"™ files ""“files'"', respectcase

local a : word count “infile'

local infile = ‘u'subinstr(" infile'"™', > """', """ *a'#*2) /* remove the quotes */
local infile = “u'subinstr (" " infile'"',".dta","", 'a') /* remove the extension .dta */
local message " " n ///
"'dirl' - The Stata Files in directory ‘data' " n ///
" matching the wildcard “files' are included. " n ///
noisily display " "message' "

local nds : word count “infile'

local a = "nds'

local message "'a' data files will be processed" n ///

noisily display " "message' "

local svd "" /* updated file list, in case a file from the infile-list can not be opened */

local nvrs = 0 /* macro for the nVars of a file when processed in portions */
local nvrsnm = 0 /* macro for the nonmissing nVars of a file when processed in portions */

if "a' > 0 {

forvalues 1 = 1(1) "a' { /* loop over the files */
local datei = word(" infile'"™', *1i'")
use "‘data'/'datei'"', clear

capture quietly describe, varlist

if rc == 601 {

local fnexist " fnexist' ‘datei'" /* List of files not found */
}
if rc == 610 {

local sl4file " sl4file' “datei'" /* List of files not to be opened */
}

if rc == 0{ /* If a file is found */

local allvars = r(varlist)
local nsik = r (k)

local n = "nsik'
local message "Processing file "i', file name: “datei'.dta with 'n' Vars at $S TIME"
noisily display " message'"

because they have to

/* Determination of the wave indicators - all of them are identified here,

be loaded for each portion.
the determination of the relevant wave indicator is not necessary for NEPS data, but

Note:
the function is kept to provide for possibly more than one wave indicators in future. */
if "u'strlen(" syrlist'") > 0 {
local syrl ""
local ns : word count “syrlist' /* Priority list of wave indicators according to section B)

of the parameter definition */

/* Compiling the list of actually present wave variables in allvars */
/* Loop: priority list of wave indicators */

forvalues j = 1(1) ‘ns' {
local syr = word(" 'syrlist'"', “J'")
forvalues 1 = 1(1) n' { /* Loop over variables in file at hand */
local av = word(" allvars'"', "1")
if "tav'" == "‘gyr'" {

local syrl "'syrl' “syr'"

}

}
local nsyrl : word count “syrl' /* the list of actually present wave indicators */

}

/* data signature of the file */

capture quietly datasignature report
local chgd = r(datetime)
if ll‘chgdlll == " v {
local infods "no data signature was previously set"

}
else {
if r(changed) == 0 {
local chgd = r(datetime)

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

46

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

local x : display %tcDDmonCCYY HH:MM “chgd'
local infods "data unchanged since “x'"

if r(changed) != 0 {
local chgd = r(datetime)
local x : display %tcDDmonCCYY HH:MM “chgd'
local infods "data has changed since "x'"

}

/* Disassemble big files into portions */

local n = “nsik’
if "n' > “port'/{
local list ™"
local p = int('n'/ port")

local x = "p' -1
local span = “port'
local beg = -"port' + 1
forvalues 1 = 1(1) "x' |
local pl = "beg' + “span'
local p2 = "pl' + “span' - 1
local wl = word(" allvars'"', “pl')
local w2 = word(" allvars'"', "p2')

local list " list' “wl'-"w2'"
local beg = "pl’
}

local pl = "beg' + “span'

local p2 = 'n'

local wl = word(" allvars'"', “pl'")
local w2 = word(" allvars'"', "p2")

local list " list' "wl'-"w2'"

if "n' <= ‘port' {
local wl = word(" allvars'"', 1)
local w2 = word(" allvars'"', "n')
local list "‘wl'—-"w2'"

}

local zn : word count “list'
local z = “zn'

forvalues s = 1(1) z' { /* Loop over every portion */

I © -

local nvrs = /* macro for the nVars of the file at hand (processed in portions) */
local nvrsnm 0 /* macro for the nonmissing nVars of the file at hand (processed in portions) */
local p = word(" list'"™', “s')
if “z' == 1{ /* only 1 portion */

local fileop ""capture use ‘p' using "'data'/ datei'.dta", clear"'

"fileop'
}
if “z' > 1 | /* more than 1 portions */

local fileop ""capture use ‘p' “syrl' using "'data'/'datei'.dta", clear"'

“fileop'
}
if c(N) == 0 { /* file has no cases */

if “u'strpos (" nobsfile'", " ‘datei' ") == {

local nobsfile " "nobsfile' “datei' " /* list of files with 0 cases */

if ¢(N) > 0 { /* file has cases */
if “s' == "z { /* in the last portion */
local svd = “u'strtrim(" svd' “datei'"™)

if "z' > 1 {
local message " Processing “datei'.dta, portion “s' of 'z': 'p' at $S TIME"
noisily display " message'"

/* update variable list, determine no of entries, set loop counter */
quietly describe, wvarlist

local allvars = r(varlist)

local nvars : word count “allvars' /* r(k) should have the same result, but I count the
entries in allvars to be on the safe side */

local n = ‘nvars'

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 48

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

SRR

/*###4### Compile the lists of the extracted information:

#H#H###E Variable related information go into lists with 1 entry per variable
SR L EE S generated by looping over the variables.

#H###4#4 File related infomation are compiled outside of the loop over the
FHES S variables.

/* the following lists have to be emptied before the next file is processed */
local dtyp ""
local 1min ""
local lmax ""
local uval ""
local uvalp ""
local valu ""
local valup ""
local nzero ""
local vmax ""
local vmin ""
local vminp ""
local smiss ""
local nmiss ""
local nsvys ""
local symin ""
local symax ""
local sylev ""
local undc ""
local vlab ""
local vlabmx ""
local values ""
local labels ""
local chgde ""
local chgen ""
local chfil ""
local chaf ""
local chgno ""
local chin ""

49

iR AR
HHAFAEEES A
FHEFHEEEESS
HHEFHEEEESS

/* Number of vars with bonmiss-values, is counted up over the vars, therefore has to be set

to 0 before a new file is processed. */
local nvn = 0

/* Determination:
from last entry to first.
between 0 and
Hence the content of syv at the end of the procedure is
with the highest priority.

lsyvl

*/
if “u'strlen(" 'syrlist'") > 0 {
local syv ""
local ns word count “syrlist' /* priority list of the

parameter definition

forvalues j = ‘ns'(-1)1 {

local syr = word(" 'syrlist'"', “3'")
capture confirm variable ‘syr', exact
if rc == { /* “syr' exists */
quietly summarize “syr', meanonly
local min = r(min)
local max = r (max)
if r(min) < & r(max) > 0 { /* “syr'
local syv "“syr'"

}

VAR £ 333358
FHERHFEHS

Begin of the routines relating to variables:
assign them to macro lists

forvalues k 1(1) n" {
/* Empty all variable-related macros which fill ists or
local vl /* Vallabelset */
local vlmx "" /* highest labeled value */

wn

wn

local uv /* Number of values */

local uvp "" /* Number of nonmissing values */

local 1In "" /* Minimum length of Stringvar */

local 1x "" /* Maximum length of Stringvar */

local sms "" /* Number of system-missings */

local nms "" /* Number of non-missing observations */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

has a value between 0 and

which is the wave indicator? The procedure moves through the priority list
is overwritten when a variable from syrlist has wvalues

the name of the wave indicator

wave indicator,

*/

according to

*/

extract indicators and A
FHedHH#ERr/

count list entries */
50

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

local sys "" /* Number of waves */

local syn "" /* Earliest wave */

local syx "" /* Latest wave */

local vu "" /* Value if there is only 1 value */

local vup "" /* nonmissing value, if there is only 1 nonmissing value */
local nz "" /* Frequency of the value 0 */

local ud "" /* undocumented value */

local vx "" /* Maximum value */

local vn "" /* Minimum value */

local vp "" /* smallest nonmissing value */

local sylev "" /* Waves wehre ‘var' has nonmissing values */

local chgde "" /* Question text from Characteristics (German) */
local chgen "" /* Question text from Characteristics (English) */
local chfil "" /* Outputfilter from Characteristics (de=en) */

local chaf "" /* Autofill-Instruction from Characteristics (de=en) */
local chgno "" /* Question-Number from Characteristics */

local chin "" /* Questionnaire-Varname from Characteristics */

/* Take the first or next variable, respectively */
local var = word(" 'allvars'", k')

/* Determine the question text of the k-th variable from the Characteristics */
local chgde : char “var'[NEPS questiontext de]
if ""“chgde'"' == "" {
local chgde "***"
}
local chgen : char “var'[NEPS questiontext en]
if ""“chgen'"' == "" {
local chgen "**x*"

}

/* Determine the outputfilter of the k-th variable from the Characteristics */
local chfil : char “var'[NEPS outputfilter de]
if “"chfil'"' = "" {
local chfil : char “var'|[NEPS outputfilter en]
}
if “"’chfil'"' = "" {
local chfil "x*x*"

/* Determine the Autofillinstruction of the k-th variable from the Characteristics */
local chaf : char “var'[NEPS autofillinstruction de]

if ‘"‘Chafl"l —_— mw {

local chaf : char ‘“var'|[NEPS autofillinstruction en]
}
if \"\Chafv"v —_— nn {

local chaf "*x*x*x"

}

/* Determine the question number of the k-th variable from the Characteristics*/
local chgno : char “var'[NEPS questionnumber]
if ‘"‘chqnol mi e mwr {

local chgno "*x**"

}

/* Determine the name in the questionnaire of the k-th var. from the Characteristics */
local chin : char “var'[NEPS alias]
if “" chin'"' == "v {

local chin "**xx*"

}

/* Determine the data type of the k-th variable */
local dt : type ‘var'

/* Name of the assigned value label Set and highest labeled value */
local vlx : value label “var'

if "vlx'" == "" { /* 1f no value label set ist assigned to var */
local v1 "-200"
local vlimx "-200"

}

if "vlx'" = v { /* if a value label set ist assigned to var... */
quietly capture label list "vlx'

if rc >0 { /* ... but the assigned label set does not exist */
local v1 "-200"
local vlimx "-200"

if rc == 0 { /* ... and the assigned label set exists */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

52

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

local vl """ “wvlx'"!'
local vilmx = r (max)

}

/* Number of values of the variable
-—> r (N unique) of command inspect gives that too, but only up to 99 unique values
hence not to be used here */

sort “var'

capture drop hl

by ‘var': gen byte hl = cond(n==1, 1, 0)

quietly summarize hl, meanonly

local uv = r (sum)

/* Generate the list of missing values */

numlist " nepsmissings'", integer sort
local misslist = r(numlist)
/* ##4#### Indicators applying to string variables #HfHES */

if “u'strpos("'dt'", "str") > 0 {

/* max and min-length */
capture drop h3

gen h3 = “u'strlen(var')
quietly summarize h3 if h3 > 0, meanonly
local 1In = r(min)
local 1x = r (max)
if “1x' == . {
local 1In = 0
local 1x =0

}

/* Auxiliary variable h2 shows if variable is empty, has a missing code,
or contains a text */

capture drop h2

gen h2 = cond(‘u'strlen(u'strtrim('var')) > 0, 1, 0)

local v : word count "misslist'’

forvalues d = 1(1) v' {
local m : word “d' of "misslist'
quietly replace h2 = -1 if ‘u'strpos('var', "'m'") > 0

}

/* Number of non-missings (not empty and not a missing-code) and of empty strings */
quietly inspect h2

local nms = r(N_pos)

local nz = r(N_0)

/* Number of non-missing levels (file is still sorted by ‘var'), using the
previeously created auxiliary variable h2
(h2 == 1 if Stringvar is neither empty nor a missing code)
The auxiliary variable h3 indicates a new category */

capture drop h3

by "var': gen byte h3 = cond(h2 == 1 & n==1, 1, 0)
quietly replace h3 = 0 if ‘var' == "" /* otherwise "empty" counts as a level */
quietly summarize h3, meanonly
local uvp = r(sum)
/* Generating wave indicators - using the previously created auxiliary variable h2 */
if "u'strlen(" 'syv'") > 0 { /* there is a wave variable in the source data */
quietly inspect “syv' if ‘syv' > 0 & “syv' <= . & h2 ==
local sys = r(N_unique)
quietly summarize “syv' if h2 ==
local syn = r(min)
local syx = r(max)
if “sys' = 0 {
local syn = -9
local syx = -9
}
quietly levelsof “syv' if h2 == , missing local (sylev)
}
if "u'strlen("'syv'") == 0{ /* if there is no wave variable in the source data */

local sys -1
local syn = -1
local syx -1

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 54

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 55

/* List for the wvalue label variables */

quietly levelsof “var' if h2 == 1 & ‘uvp' < 101 , clean separate(***) local (labels)
if “u'strlen(" labels'"') > 0 {
local labels = """ labels'***™"! /* using *** as a delimiter, as yet 3 asterixes

are not part of the label strings */

}

/* assigning defaults to the indicators which do not apply for string vars */

local vu = -200
local vp = -200
local vup = -200
local ud = -200
local vx = =200
local vn = -200
local vlimx = -200
local sms = -200
} /* end of the rouutines for stringvars */
/* ###### Indicators applying for numvars (= not a stringvar) ###### */

/* defaults for max-min-length, and identify the unige value, if “var' has one
(file is still sorted by ‘var') */

if “u'strpos("'dt'", "str") == 0 {

local 1In = -200

local 1x = =200

if ‘uv' == 1 { /* uv contains the number of levels or different

values, respectively */
local vu = “var'[1l]
}
if “uv' I=1 {

local vu = -900

/* Auxiliary variable h2 shows if variable is empty, has a missing code,
or contains another value */
capture drop h2
gen h2 = cond('var' < ., 1, -2)
quietly replace h2 = 0 if ‘var' == 0
local v : word count "misslist'
forvalues d = 1(1) v' {
local m : word "d' of "misslist'
quietly replace h2 = -1 if “var' == real(" ' m'")
}
/* => h2 = -2 (var == sysmis), -1 (var == missing), 0 (var == 0),
1 (var > 0 & not missing/sysmis) */

/* Number of different nonmissing values (file is still sorted by ‘var')*/
capture drop h3

by ‘var': gen byte h3 = cond(h2 >= 0 & n==1, 1, 0)

quietly summarize h3, meanonly

local uvp = r(sum)

/* nonmissing value, if there is only 1 nonmissing value */

if “uvp' == 1 {
gsort -h3 /* ATTENTION: file is being resorted */
local vup = “var'|[1l]

}

if “uvp' !'= 1 {
local vup = -900

}

/* Frequencies of the value 0, of nonmis values and of unlabeled values */
quietly inspect h2

local nms = r(N pos) + r(N_0)

local nz = r(N_0)

quietly inspect “wvar'

local ud = r(N_undoc)

if ‘ud' == . {
local ud = 0

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 57

/* Frequencies of System-Missings
ATTENTION pitfall: if there are no system missings, the return codes are . */
quietly misstable summarize "var'
local sms = r(N_gt dot) + r(N_eq dot)
if “sms' == . {
local sms = 0

}

/* Maximum and minimum non-missing value of var */

quietly summarize “var', meanonly

local vx = round(r (max), .001) /* rounded, for not to exeed max length of macros */
local vn = round(r (min), .001) /* rounded, for not to exeed max length of macros */

/* Minimum positive value of var */
quietly summarize “var' if h2 >= 0, meanonly

local vp = round(r (min), .001) /* rounded, for not to exeed max length of macros */
if “vp' == . { /* => there are no positive values of var */
local vp = =900
}
/* ##### Variable-related wave indicators: R AL LS

Number of waves plus earliest and latest wave where var is non-missing,
using the previously generated auxiliary variable h2 */

if “u'strlen("'syv'") > 0 { /* Wave information is present in source file */
quietly inspect “syv' if ‘syv' > 0 & “syv' < . & h2 >= 0
local sys = r(N_unique)
quietly summarize “syv' if “syv' > 0 & “syv' < . & h2 >= 0, meanonly

local syn = r(min)
local syx = r(max)
if “sys' == 0 {
local syn = -9
local syx = -9
}
}
if ‘u'strlen("'syv'") == 0{ /* No wave information is present in source file */

local sys -1
local syn -1

local syx -1

/*#4##444 Generating the wave-, values—, and value label variables ######44#444444
#HHEHHESEES fill local lists for each of these FHF AR A ER RS/

VR S22 2E2EEE Generate the wave-flag-variables HHAEH SRR/

/* lists of the waves where var has nonmissing values. The option "missing"
causes that also the level "." of syv is included in the list
which is required to create an array structure of all the lists*/

if ‘“u'strlen(" 'syv'") > 0 {
quietly levelsof “syv' if h2 >= 0 , missing local (sylev)

/R Generating the lists for nonmissing levels HHAH SRS
SRS E i and value labels of var (max 100 levels) SRS A A S EEE SR

quietly levelsof “var' if h2 >= 0 & “uvp' < 101, local (values)
local ¢ : word count “values'
if "e¢' > 0 |

if "Tvlx'" = "-2" { /* if a label set has been assigned to var... */
local labels ""
forvalues j=1(1) 'c' {
local wx : word “j' of ‘values'
local lab : label ("var') “wx', strict
local lab ""‘lab'***"' /* using *** as a delimiter, as yet 3 asterixes

are not part of the label strings */
if “"tlab'"!' == "kFkxU {
local lab "###***"
}
local labels " labels' lab'"™'

}
}

/* end of the routines for numvars */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 58

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* Fill the lists with values from all variables */

local uval "“uval' “uv'" /* Number of (unique) levels */

local uvalp " “uvalp' “uvp'" /* Number of (unique) levels >= 0 */

local Ilmin " lmin' “1n'" /* min-length (string vars) */

local Ilmax " lmax' “1x'" /* max-length (string vars) */

local valu "‘valu' ‘vu'" /* value of var, if there is only 1 level */

local valup " valup' ‘vup'" /* positive value of var if there is only 1 posit.
local nzero "'nzero' ‘nz'" /* frequency of value 0 */

local vmax " vmax' “vx'" /* maximum of var */

local vmin " vmin' “vn'" /* minimum of var */

local vminp "‘vminp' ‘vp'" /* minimum value >=0 (limited to 2 decimal places) */
local nmiss " 'nmiss' ‘nms'" /* number of non-missing observations */

local smiss " 'smiss' “sms'" /* number of system-missing observations */
local nsvys "’'nsvys' “sys'" /* number of waves where var has been surveyed */
local symin "’'symin' ‘syn'" /* earliest wave where var has been surveyed */
local symax " 'symax' “syx'" /* latest wave where var has been surveyed */

local undc " “undc' “ud'" /* number of unlabeled obs. (only vars with label set)
local vlab "'vlab' “v1'" /* name of attached value label set */

local vlabmx " vlabmx' “vlimx'"/* highest labeled value */

/* The following lists are overwritten with every new file,

of the working space.
This is achieved by naming the lists alike except for an variable enumerator */

/* locals for

local
local

/* locals for

local
local
local
local

chargde " k'
chargen k'

charfil k'
chautf k'
chquesn k'
chinam k'

the question texts
L chqde T
L chqenl "

/* standardized wave lists

local sytemp ""
if "'sylev'" !=
local c¢

word count

*/
/* German question text of k-th variable */
/* English question text of k-th variable */

further characteristics of the k-th variable */
\"\Chfill"l
‘"‘Chafl"'
‘"‘Chqnol"'
‘"‘Chinl"'

*/

/* standardized wave list of the k-th variable */
{ /* previously compiled list of waves where var >= 0 */

‘sylev'

59

level*/

*/

lest they might use too much

}
/*

forvalues j = 1(1) c' {
local sla : word "j' of “sylev'
local slan = real (" 'sla'")

/* unadmissible values are filtered out further down and written to output */
local sytemp "“sytemp' “slan'" /* compilation of the list of the standardized
survey years */
}
local sylev k'

A\ ™

“sytemp

k-th 1list, using the previously compiled value list (only vars with 1-100
nonmissing levels) */

local ¢ : word count “values'

if
}
/*

if

/*
if

}
yoo/

e > 0 |

local values k' "‘values'"

k-th 1list, using the previously compiled value label list (only vars with 1-100
nonmissing levels) */

‘u'strlen(" labels'"') > 0{

local labels k' ""“labels'"'

update the enumerator for vars with nonmissing observations */
‘nms' > 0 {
local nvn = ‘nvn' + 1

End loop over the variables of a file */

/* #### End routines for variables / begin routines for the entire file or portion ######*/
capture drop hl
capture drop h2
capture drop h3

/* No.

of obs, no. of vars and no. of nonmissing vars of a file */

local no = ¢(N) /* no. of obs. */
local nv = c(k)/* no. of vars */

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

60

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 61

/* no. of vars with nonmiss obs has been counted up above, in macro nvn within the loop
over the variables */

/* ####4## Generating the metafile for the file just being processed FHSHHH AL/

/* Create a basic metafile: only variable names and variable labels
in different language versions, 1if there are any */

quietly label language

local nl = r (k)

local langs = r(languages)
local currl = r(language)
local langsoth "" /* List of the other than current languages */
forvalues nn = 1(1) "nl' {
local lanx : word 'nn' of "langs'
if "lanx'" != "“currl'" {

label language "lanx'
describe, replace clear /* this command creates the basic metafile */
if c(N) > 0 { /* if the new file has records */

keep name varlab

rename name varname

rename varlab varlab "lanx'

save "'pfadld'/temp "lanx'.dta", replace

local langsoth "“langsoth' “lanx'"

}

"fileop' /* reopen the source file just being processed */

}

label language “currl'

/* create a 2nd basic metafile: var name, var label, var type, isnumeric, and merge the

1st basic metafile which contains the var labels in different languages (if available) */
describe, replace clear
if c(N) > 0 { /* if the new file has records */

keep name varlab type isnumeric

rename name varname

rename varlab varlab “currl'

/* merge metafile 1 with varlabels in different languages */

if "u'strlen (" langsoth'"™) > 0{

local nlango : word count " langsoth'

forvalues o = 1(1) ‘nlango’ {
local lango : word o' of “langsoth'
merge 1:1 varname using " pfadld'/temp “lango'.dta"
capture erase "’'pfadld'/temp “lango'.dta"

}

capture drop merge

/* #### Add file related information #### */

/* Source file name */

capture drop datenfile

gen str datenfile = "“datei'"

lab var datenfile "Source file"

order datenfile, first

/* Data signature */

capture drop dsign

gen str40 dsign = "“infods'"

lab var dsign "Data signature (date)"

order dsign, after(datenfile)

/* No. of observations in source file */

capture drop nobs

gen nobs = "no'

lab var nobs "No. of observations in source file"
order nobs, after (dsign)

/* No. of variables in source file */

capture drop nvrs

gen nvrs = ‘nv'

lab var nvrs "No. of vars in source file"

order nvrs, after (nobs)

/* No. of variables with non-missing values in source file*/
capture drop nvrsnm

gen nvrsnm = "nvn'

lab var nvrsnm "No. of vars with non-miss values in source file"
order nvrsnm, after (nvrs)

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* #### Add variable related information #### */

/* No. of non-missing observations in variable */

capture drop nonmis

gen long nonmis = 0

lab var nonmis "No. of non-miss obs in var"

/* No. of system-missing observations in variable */
capture drop sysmis

gen long sysmis = 0

lab var sysmis "No. of system-miss obs in var"

/* No. of levels in variable */

capture drop unigvals

gen unigvals = 0

lab var unigvals "No. of levels in var"

/* No. of levels in var >= 0 (namely nonmissing) */

capture drop unigvalpos

gen unigvalpos = 0

lab var unigvalpos "No. of levels in var >= 0"

/* Value, if there is only 1 level in variable */

capture drop valunig

gen long valunig =

lab var wvaluniqg "Value if only 1 level"

/* Non-missing value, if there is only 1 non-missing level */
capture drop valunigpos

gen long valunigpos =

lab var valunigpos "Value if only 1 level >= 0"

/* Frequency of value 0 in numVar */
capture drop nvalzero

gen long nvalzero =

lab var nvalzero "Frequency of value O
/* Minimum value of the variable */
capture drop valmin

gen long valmin =

lab var valmin "Minimum value of var"
/* Minimum value >= 0, namely minimum nonmissing value */
capture drop valminp

gen long valminp =

lab var valminp "Minimum value of var >= 0"

/* Maximum value of the variable */

capture drop valmax

gen long valmax =

"w

63

lab var valmax "Maximum value of var"

/* Name of the attached value label set */
capture drop vallabset

gen str vallabset = ""

lab var vallabset "Name of value label set"
/* Number of unlabeled observations (with labeled variables only */
capture drop undoc

gen long undoc =

lab var undoc "No. of unlabeled obs (labeled vars only)"
/* Highest labeled value */

capture drop vlabmax

gen vlabmax =

lab var vlabmax "Maximum labeled value"

/* Minimal length of string variable */
capture drop strmin

gen long strmin =

lab var strmin "Min. length of string var"
/* Maximal length of string variable */
capture drop strmax

gen long strmax =

lab var strmax "Max. length of string var"

/* Vars for the wave indicators */
capture drop wind

gen str wind = "“syv'"
if “u'strlen(" 'syv'") == 0 {
quietly replace wind = "-1"

}

lab var wind "Wave indicator"
capture drop nwaves

gen byte nwaves = 0

lab var nwaves "No. of waves"
capture drop wavemin

gen wavemin = 0

lab var wavemin "Earliest wave"
capture drop wavemax

gen wavemax = 0

lab var wavemax "Latest wave"

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* Blanco-Variables for the waves */

local n = "‘nw'

forvalues j = 1(1) n' {
local scrpt = “j'-1+ wavel'
capture drop wav scrpt'
gen int wav scrpt' = 0

}

/* Variables for the question texts */

capture drop questde

gen str questde = ""

lab var questde "German gquestion text"

capture drop questen

gen str questen = ""

lab var questen "English question text"

/* Variable for the Outputfilter */
capture drop ofilter

gen str ofilter = ""

lab var ofilter "Output filter"

/* Variable for the Autofill-Instruction */
capture drop afill

gen str afill = ""

lab var afill "Autofill instruction"

/* Variable for the Question number in the questionnaire */
capture drop iquestno

gen str iquestno = ""

lab var iquestno "Question no. in questionnaire"

/* Variable for the variable name in the questionnaire */
capture drop ivarname

gen str ivarname = ""

lab var ivarname "Varname in questionnaire"

/* Blanco-variables for the values (only varables with 1-100 levels)
forvalues j = 1(1)100 {

local scrpt = "3J'

capture drop val scrpt'

*/

65

gen val scrpt' =

}

/* Blanco-variablen for the labels (only varables with 1-100 levels) */
forvalues j = 1(1)100 {

local scrpt = “3j'

capture drop lab scrpt'

gen str lab scrpt' = ""

}

/* Note: the variables undoc as well as val# and lab# will be modified further down, after
compiling the single metafiles */

local nok " " /* list for unadmissible values of the wave indicator (--> to Output*/
local n = "nvars'
forvalues k = 1(1) 'n' {

local var : word k' of ‘allvars'
local uv : word “k' of “uval'
local uvp : word k' of “uvalp'
local vu : word “k' of “valu'
local vup : word k' of ‘valup'

local nz : word k' of ‘nzero'
local vx : word “k' of “vmax'
local vn : word “k' of “vmin'

local vp : word k' of “vminp'
local 1x : word k' of "lmax'
local 1In : word k' of "lmin'

local nms : word “k' of "nmiss'
local sms : word “k' of “smiss'
local sys : word ‘k' of “nsvys'

local syn : word k' of “symin'
local syx : word k' of “symax'
local ud : word “k' of “undc'
local vl : word “k' of “vlab'
local vlmx : word k' of “vlabmx'

quietly {
replace nonmis = ‘nms' if varname == "‘var'"
replace sysmis = “sms' if varname == "‘var'"
replace unigvals = ‘uv' if varname == "‘var'"

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 66

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

replace unigvalpos = “uvp' if varname == "“var'"
replace valunig = “vu' if varname == "‘var'"
replace valunigpos = “vup' if varname == "“var'"
replace nvalzero = ‘nz' if varname == "'var'"
replace valmax ‘vx' if varname == "‘var'"
replace valmin = “vn' if varname == "“var'"
replace valminp = ‘vp' if varname == "‘var'"
replace strmax "1x' if varname == "‘var'"
replace strmin = "1n' if varname == "‘var'"
replace nwaves = 'sys' if varname == "‘var'"
replace wavemin syn' if varname == "‘var'"
replace wavemax = ‘syx' if varname "“var'"
replace undoc = "ud' if varname == "“var'"
replace vallabset = "'v1'" if varname == "“var'"
replace vlabmax = ‘vlmx' if varname == "“var'"
/* Fill the wav# variables */
if “u'strlen(" 'syv'") == 0 { /* 1f there is no wave indic. 1n source

local mark O

local ¢ = "nw'

forvalues j = 1(1) c' {

local scrpt = "J'-1+ wavel'

replace wav scrpt' = -1
}
}
if "u'strlen(" 'syv'") > 0 { /* 1if there is a wave indic. 1in source file
local c¢ word count ‘sylev k''
forvalues j = 1(1) c' {
local slan = word (" 'sylev'k''", “J")
local mark = real (" slan'")
if "mark' >= “wavel' & ‘mark' <= ‘wavel' {
capture confirm new variable wav slan', exact
if rc != 0{
replace wav slan' = 1 if varname == "“var'"
}
}
if "mark' < “wavel' | "mark' > “wave2' {

file */

*/

67

if "u'strpos(" "nok' ", " ‘mark' ") == 0 {
local nok " 'nok' ‘mark'"

}
}

local sylev'k' "" /* mandatory, lest its content might be transferred
to the next source file in certain cases */

}

/* Fill the value variables */

if "u'strlen (" values'k''") > 0 {
local ¢ : word count “values k''
forvalues j = 1(1) c' {
local val = word (" values'k''", “J")
local valn = real (" 'val'")
capture confirm new variable val’ j', exact
if rc !'=0 {
replace val j' = ‘valn' if varname == "“var'"
}
}
local values k' "" /* mandatory, lest its content might be transferred

to the next source file in certain cases */

}

/* Fill the value label variables */

if ‘u'strlen(" labels k''"') > 0 {

local str = ""“labels k''"'

local a = "u'strpos(" str'"', "kx*xT)

local x =1

while “a' > 0 {
local 1lb = ‘u'substr("'str'"', 1, a'-1)
capture confirm new variable lab 'x', exact
if rc != 0/

replace lab'x' = ""'1b'"' if varname == "‘var'"

}
local str = ‘u'substr("'str'"','a'+3,.) /* rest of the string to end */
local a = "u'strpos(" str'"', "x")
local x = "x' + 1

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

local labels'k' "" /* /* mandatory, lest its content might be transferred
to the next source file in certain cases */ */

}

/* Fill the variables for question text and outputfilter */

replace questde = ""’'chargde ' k''"' if varname == "‘var'"
replace questen = ""'chargen k''"' if varname == "‘var'"
replace ofilter = ""“charfil k''"' if wvarname == "'var'"
replace afill = " chautf 'k''"' if wvarname == "‘var'"
replace iquestno = ""'chquesn'k''"' if varname == "‘var'"
replace ivarname = ""“chinam 'k''"' if wvarname == "'var'"
} /* End of: quietly */
} /* End of loop over the variables of a portion */
if ‘u'strlen(" 'nok'") > 0 & "‘nok'" I= " " [{
local message " " n ///
"The wave indicator “syv' in file “datei' " n ///
" includes the possibly inadmissible value(s) ‘nok'" n ///

noisily display " message'"

}

save "'pfadld'/meta ‘datei' xxx's'.dta", replace

if "s' == “zn' { /* last portion is reached: merge the portion files */
if “zn' > 1 {
local p = “zn'
forvalues t = 1(1) 'p' {
use "’'pfadld'/meta ‘datei' xxx't'.dta", clear
local nvrs = “nvrs' + nvrs[l]
local nvrsnm = ‘nvrsnm' + nvrsnm[1]
}
local p = “zn'

use "’'pfadld'/meta “datei' xxxl.dta", clear
forvalues t = 2(1) 'p' {
append using " 'pfadld'/meta ‘datei' xxx't'.dta"

/* subtract the number of survey variables */

if “nsyrl' > 0 {

local abz = ("zn'-1l)* nsyrl'
quietly {
replace nvrs = ‘nvrs'-"abz'
replace nvrsnm = ‘nvrsnm'- abz'

duplicates drop

}

save "'pfadld'/meta “datei' “we'.dta", replace

/* Delete the single portion files */
local p = “zn'
forvalues t = 1(1) 'p' {
capture erase "'pfadld'/meta “datei' xxx't'.dta"

}

} /* End: in a last portion */
} /* End: create a metafile for a source file */
} /* End: if the source file has observations */
} /* End: Processing of a file / portion */
} /* End: 1f file 1is found */
} /* End: loop over all source files */

} /* End: if ‘a' > 0 = if there are source files in the directory */
if "u'strlen("“svd'") > 0 {

/* Assemble the single metafiles (only if there are more than 1) */
local nds : word count ‘svd' /* initialize enumerator */
local a = "nds'

local datei = word(" 'svd'", 1)
use "’'pfadld'/meta “datei' ‘we'.dta", clear

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

70

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

if "a' > 1 {

local message " " n ///
"'dirl' - The single metafiles are being assembled " n ///
" " _n / / /
"Processing... Please wait. " n ///

noisily display " message'"

forvalues 1 = 2 (1) "a' {
local datei = word (" 'svd'", "i'")
append using "'pfadld'/meta “datei' ‘we'.dta"

}

/* Add a variable for the start cohort to the meta file */
capture drop stcohor

gen strl0 stcohor = ""

replace stcohor = "SUF " + “u'substr(datenfile, 1, 3)

lab var stcohor "Start cohort"

order stcohor, before(datenfile)

save "'pfadld'/temp ‘we'’'dirl' “datum'", replace

/* Delete the single metafiles */

local a = "nds'
forvalues 1 = 1(1) "a' {
local datei = word(" 'svd'"', "1i'")

capture erase "'pfadld'/meta ‘datei' “we'.dta"

} /* End: Assemble the single files of a start cohort */
} /* End: Loop over the directories of the start cohorts */

if “abbruch' == 1 {
exit

/* Assemble the single metafiles of the start cohorts while determining the first one */

local n = "nrd'
forvalues 1 = "n'(-1)1 {
local dir2 : word "i' of "alld'
capture quietly describe using " 'pfadld'/temp ‘we' dir2' “datum'", varlist
if rc == 0{ /* file exists */
local dirl = " dir2'"
local a = "i'+1l

}

use "'pfadld'/temp ‘we' dirl' “datum'", clear
capture erase "’'pfadld'/temp “we' dirl' “datum'.dta"

local n = “nrd'
if "n' > "a’' {
local message " " n///
""The meta files of the start cohorts “alld' are being assembled "' n ///
" " n///
"Processing... Please wait. " n ///

noisily display " message'"

forvalues 1 = “a'(l) 'n' {
local dirl : word “i' of ‘alld'
capture quietly describe using " 'pfadld'/temp “we' dirl' ‘datum'", varlist
if rc == 0{ /* file exists */
append using " pfadld'/temp ‘we' dirl' “datum'"
capture erase "'pfadld'/temp “we'’ dirl' “datum'.dta"

}
VAR i i i i i
FHHHHHH AR HHHHHHE Generate variables and modifications in the overall metafile ########H#HH4HH4HHHFHHHHFHRHSHHHHS

FHEF RS FHERFH A F AR A
S i i i

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 72

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* Modification of the variable undoc, if only the missing codes and possibly value 0 are labeled */
capture confirm new variable undoc, exact

if rc == 110 { /* var exists */
replace undoc = -900 if undoc == nonmis & undoc !=
replace undoc = -900 if undoc == (nonmis - nvalzero) & undoc !=

}
/* Modification of the val#- und lab# vars, for string source vars, or numeric source varswith more than 100 non-
missing levels, or with less than 100 levels, but only missing codes.

*/
forvalues x= 1(1)100 {
quietly {
capture confirm new variable val ' x'
if rc == 110 {
replace val x' = -200 if isnumeric == 0
replace val x' = -100 if isnumeric == 1 & unigvalpos > 100
replace val x' = =900 if isnumeric == 1 & unigvalpos <= 100 & nonmis == 0

}

capture confirm new variable lab x'
if rc == 110 {

replace lab 'x' = "-200" if vallabset == "-200" & isnumeric == 1

replace lab 'x' = "-100" if isnumeric == 1 & vallabset != "-200" & unigvalpos > 100

replace lab 'x' = "-100" if isnumeric == 0 & unigvalpos > 100

replace lab 'x' = "-900" if isnumeric == 1 & vallabset != "-200" & unigvalpos <= 100 & nonmis == 0

}

/* Modification of the variables questde and questen */

quietly {
replace questde = "" if questde == "*x**"
replace questen = "" if questen == "H**"
replace ofilter = "" if ofilter == "***"
replace afill = "" if afill == "***"
replace iquestno = "" if iquestno == "*x*xx"

mwn

replace ivarname = if ivarname == "*x*xx"

/* Include record number and variable for start cohort tag */
capture drop 1lfn

gen long 1fn = n

order 1lfn, first

lab var lfn "Record number"

/* fill start cohort, if yet empty */
capture confirm new variable stcohor

if rc == 110 {

if stcohor[l] == "" {

replace stcohor = "SUF " + “u'substr(datenfile, 1, 3)

}
}
J* HEFFEEEF A F S Generate a string variable that maps the waves FHEF 444

(tested: the syntax works for at least 100 waves)

*/

capture drop waves

gen str waves = ""

lab var waves "Waves where var has nonmiss values"
order waves, after (wavemax)

if “wavel' != 0 & “wave2' >= “wavel' { /* 0 is the default if wavel and wave2 are empty in the parameter
definition */
local wellen "“wavel'/ wave2'"
numlist "“wellen'", integer sort
local wlist = r(numlist)
local nw : word count “wlist'
local n = ‘nw'
local comm "replace waves = "
local comml “"replace waves = "-1" if "!'

local rsum = 0

forvalues 1
capture
gen str
replace

= 1(1) ' n" {

drop tempwav i'

tempwav i' = ""

tempwav i' = strofreal('i') + " " if wav'i' == 1

local comm = ""‘comm' tempwav i' +"'
local comml = ""“comml' wav ' i' == -1 | "!

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

74

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

/* take off the "+" and "|" at the end of the string */
local comm = substr(" comm'"', 1, ustrlen(" 'comm'"') - 2)
local comml = substr(" 'comml'"', 1, ustrlen(" comml'"') - 3)

/* execute the replace-commands */
“comm'
“comml'

capture drop wsum

egen wsum = rowtotal (wav wavel' - wav wavel2')
replace waves = "0" if wsum == 0

capture drop wsum

local n = "nw'
forvalues 1 = 1(1) n' {
capture drop tempwav i'

}
/* Changing the var sequence */

order varlab* ivarname iquestno quest* ofilter afill, after (varname)
order vlabmax, after (valmax)

label data " reslab'"
datasignature set, reset
save "'pfadld'/ result'", replace

local dirl : word 1 of “alld’ /* delete the last of the tempfiles */
capture erase "’'pfadld'/temp “we' dirl' “datum'.dta"

/* Generation of SC-specific metafiles */

quietly levelsof stcohor, local(stclist) /* extract values of startcohort-variable */
local nsc : word count “stclist'

local n = ‘nsc'
forvalues 1 = 1(1) n' {
preserve
local stc : word "i' of “stclist'

local krz = “u'substr (" 'stc'", 5, “u'strlen(" 'stc'™))

keep if stcohor == "’'stc'"
save "'pfadld'/metaf ‘we' krz' ‘datum'", replace
restore

}

SRR A R S R S R R R R S

iiiddgdddddddasatatatAEEEEEEE idigdsdadsssddddsdsatatatataRaRARARAREEEEEEEEE]
iiidddddddtdasdasatatatamamdddidi DISPLAY RUNTIME OF THE PROGRAM FHAEHFH S
FHAfH AR AR AR FHEH Y/
quietly {

timer off 1
quietly timer list

scalar “time'=(r(tl))

local hrs = int(time'/3600)

scalar “time' = (r(tl)) - (hrs' * 3600)
local min = int(time'/60)

local sec = round(time' - ("min' * 60), .01)
if "u'strlen (" fnexist'") == 0 {

local fnexist "none"

}

if “u'strlen (" 'sl4file'") == 0 {
local sl4file "none"

}
if “u'strlen (" nobsfile'") == 0 {
local nobsfile "none"

}

local ml "The generated metafile is named:"

local m2 "“result'"
local m3 ""
if “u'strlen(" u'") > 0 {
local message " " n ///
"Job completed. " n ///
"Runtime of the program: ‘hrs' hrs ‘min' min ‘sec' sec " n ///
"END at $S TIME on $S DATE " n ///

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten 76

Klaudia Erhardt: NEPS-Metafile.do - ein Stata-Do-File zur Generierung eines Metafiles zu den NEPS-Daten

" " _n ///

" 'ml' " n ///

" ‘m2'" " n ///

" ‘m3'' " n ///

" in Directory ‘pfadld' " n ///

" " _n / / /

" Files that could not be processed: " n ///

" " _1’1 / / /

"....Files not found: “fnexist' " n ///

" " _1’1 / / /

"....Files with O cases: 'nobsfile' "™ n ///

if “u'strlen(" u'") == {
local message " " n ///
"Job completed. " n///
"Runtime of the program: “hrs' hrs "min' min “sec' sec
"END at $S _TIME on $S DATE " n ///

" " _l'l ///

" *mll " _l'l ///

" \mZI " _n ///

" \m3l " _n ///

" in Directory pfadld' " n ///

" " _l’l / / /

" Files that could not be processed: " n ///

n ///

"....Files not in the actual Stata format: “sl4file'’

n ///

"....Files not found: “fnexist' " =n ///

n ///

"....Files with 0 cases: ‘nobsfile' " n ///

} /* Ende: quietly */

noisily display " ‘message' " n ///

" ‘messagel'"

capture log close
set output proc

"o ///

"o ///

77

